Kooperativer Bibliotheksverbund

Berlin Brandenburg


Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 11 October 2016, Vol.113(41), pp.11591-11596
    Description: The functional annotation of transcriptomes and identification of noncoding RNA (ncRNA) classes has been greatly facilitated by the advent of next-generation RNA sequencing which, by reading the nucleotide order of transcripts, theoretically allows the rapid profiling of all transcripts in a cell. However, primary sequence per se is a poor predictor of function, as ncRNAs dramatically vary in length and structure and often lack identifiable motifs. Therefore, to visualize an informative RNA landscape of organisms with potentially new RNA biology that are emerging from microbiome and environmental studies requires the use of more functionally relevant criteria. One such criterion is the association of RNAs with functionally important cognate RNA-binding proteins. Here we analyze the full ensemble of cellular RNAs using gradient profiling by sequencing (Grad-seq) in the bacterial pathogen Salmonella enterica, partitioning its coding and noncoding transcripts based on their network of RNA-protein interactions. In addition to capturing established RNA classes based on their biochemical profiles, the Grad-seq approach enabled the discovery of an overlooked large collective of structured small RNAs that form stable complexes with the conserved protein ProQ. We show that ProQ is an abundant RNA-binding protein with a wide range of ligands and a global influence on Salmonella gene expression. Given its generic ability to chart a functional RNA landscape irrespective of transcript length and sequence diversity, Grad-seq promises to define functional RNA classes and major RNA-binding proteins in both model species and genetically intractable organisms.
    Keywords: Hfq ; Proq ; RNA–Protein Interaction ; Noncoding RNA ; Small RNA ; Bacterial Proteins -- Metabolism ; High-Throughput Nucleotide Sequencing -- Methods ; RNA, Bacterial -- Metabolism ; RNA-Binding Proteins -- Metabolism ; Salmonella Enterica -- Metabolism
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: EMBO Journal, 13 November 2013, Vol.32(22), pp.2963-2979
    Description: Small RNAs use a diversity of well‐characterized mechanisms to repress mRNAs, but how they activate gene expression at the mRNA level remains not well understood. The predominant activation mechanism of Hfq‐associated small RNAs has been translational control whereby base pairing with the target prevents the formation of an intrinsic inhibitory structure in the mRNA and promotes translation initiation. Here, we report a translation‐independent mechanism whereby the small RNA RydC selectively activates the longer of two isoforms of mRNA (encoding cyclopropane fatty acid synthase) in . Target activation is achieved through seed pairing of the pseudoknot‐exposed, conserved 5′ end of RydC to an upstream region of the mRNA. The seed pairing stabilizes the messenger, likely by interfering directly with RNase E‐mediated decay in the 5′ untranslated region. Intriguingly, this mechanism is generic such that the activation is equally achieved by seed pairing of unrelated small RNAs, suggesting that this mechanism may be utilized in the design of RNA‐controlled synthetic circuits. Physiologically, RydC is the first small RNA known to regulate membrane stability. The small RNA RydC stabilizes target mRNAs in a translation‐independent manner through base pairing to the 5′UTR, blocking RNase E access. Cyclopropane fatty acid synthase is a target for RydC, providing the first link between sRNA regulation and membrane biosynthesis in bacteria.
    Keywords: Fatty Acid Synthesis ; Hfq ; Mrna Activation ; Noncoding Rna ; Small Rna
    ISSN: 0261-4189
    E-ISSN: 1460-2075
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Genes & development, 01 November 2008, Vol.22(21), pp.2914-25
    Description: Noncoding RNA regulators have been implicated in almost all imaginable cellular processes. Here we review how regulatory small RNAs such as Spot42, SgrS, GlmY, and GlmZ and a cis-encoded ribozyme in glmS mRNA control sugar metabolism. Besides discussing the physiological implications, we show how the study of these molecules contributed to our understanding of the mechanisms and of general principles of RNA-based regulation. These include the post-transcriptional repression or activation of gene expression within polycistronic mRNAs; novel ribonucleoprotein complexes composed of small RNA, Hfq, and/or RNase E; and the hierarchical action of regulatory RNAs.
    Keywords: Carbohydrate Metabolism ; Bacterial Proteins -- Metabolism ; RNA, Bacterial -- Metabolism ; RNA, Untranslated -- Metabolism
    ISSN: 0890-9369
    E-ISSN: 15495477
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages