Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Soil Texture
  • 1
    Language: English
    In: Plant and Soil, 2011, Vol.340(1), pp.7-24
    Description: Spatial prediction of soil organic matter is a global challenge and of particular importance for regions with intensive land use and where availability of soil data is limited. This study evaluated a Digital Soil Mapping (DSM) approach to model the spatial distribution of stocks of soil organic carbon (SOC), total carbon (C tot ), total nitrogen (N tot ) and total sulphur (S tot ) for a data-sparse, semi-arid catchment in Inner Mongolia, Northern China. Random Forest (RF) was used as a new modeling tool for soil properties and Classification and Regression Trees (CART) as an additional method for the analysis of variable importance. At 120 locations soil profiles to 1 m depth were analyzed for soil texture, SOC, C tot , N tot , S tot , bulk density (BD) and pH. On the basis of a digital elevation model, the catchment was divided into pixels of 90 m × 90 m and for each cell, predictor variables were determined: land use unit, Reference Soil Group (RSG), geological unit and 12 topography-related variables. Prediction maps showed that the highest amounts of SOC, C tot , N tot and S tot stocks are stored under marshland, steppes and mountain meadows. River-like structures of very high elemental stocks in valleys within the steppes are partly responsible for the high amounts of SOC for grasslands (81–84% of total catchment stocks). Analysis of variable importance showed that land use, RSG and geology are the most important variables influencing SOC storage. Prediction accuracy of the RF modeling and the generated maps was acceptable and explained variances of 42 to 62% and 66 to 75%, respectively. A decline of up to 70% in elemental stocks was calculated after conversion of steppe to arable land confirming the risk of rapid soil degradation if steppes are cultivated. Thus their suitability for agricultural use is limited.
    Keywords: Classification and Regression Trees (CART) ; Soil organic carbon (SOC) ; China ; Grassland
    ISSN: 0032-079X
    E-ISSN: 1573-5036
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Global Change Biology, October 2015, Vol.21(10), pp.3836-3845
    Description: Organic carbon () sequestration in degraded semi‐arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon () sequestration potential in steppe soils and their current saturation status remains unknown. In this study, we estimated the storage capacity of semi‐arid grassland soils on the basis of remote, natural steppe fragments in northern China. Based on the maximum saturation of silt and clay particles 〈20 μm, sequestration potentials of degraded steppe soils (grazing land, arable land, eroded areas) were estimated. The analysis of natural grassland soils revealed a strong linear regression between the proportion of the fine fraction and its content, confirming the importance of silt and clay particles for stabilization in steppe soils. This relationship was similar to derived regressions in temperate and tropical soils but on a lower level, probably due to a lower C input and different clay mineralogy. In relation to the estimated storage capacity, degraded steppe soils showed a high saturation of 78–85% despite massive losses due to unsustainable land use. As a result, the potential of degraded grassland soils to sequester additional was generally low. This can be related to a relatively high contribution of labile , which is preferentially lost in the course of soil degradation. Moreover, wind erosion leads to substantial loss of silt and clay particles and consequently results in a direct loss of the ability to stabilize additional . Our findings indicate that the loss in semi‐arid environments induced by intensive land use is largely irreversible. Observed increases after improved land management mainly result in an accumulation of labile prone to land use/climate changes and therefore cannot be regarded as contribution to long‐term sequestration.
    Keywords: Climate Change ; Fine Fraction ; Soil Organic Carbon ; Soil Texture ; Steppe Soils
    ISSN: 1354-1013
    E-ISSN: 1365-2486
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Geoderma, 01 January 2019, Vol.333, pp.149-162
    Description: The capacity of soils to store organic carbon represents a key function of soils that is not only decisive for climate regulation but also affects other soil functions. Recent efforts to assess the impact of land management on soil functionality proposed that an indicator- or proxy-based approach is a promising alternative to quantify soil functions compared to time- and cost-intensive measurements, particularly when larger regions are targeted. The objective of this review is to identify measurable biotic or abiotic properties that control soil organic carbon (SOC) storage at different spatial scales and could serve as indicators for an efficient quantification of SOC. These indicators should enable both an estimation of actual SOC storage as well as a prediction of the SOC storage potential, which is an important aspect in land use and management planning. There are many environmental conditions that affect SOC storage at different spatial scales. We provide a thorough overview of factors from micro-scales (particles to pedons) to the global scale and discuss their suitability as indicators for SOC storage: clay mineralogy, specific surface area, metal oxides, Ca and Mg cations, microorganisms, soil fauna, aggregation, texture, soil type, natural vegetation, land use and management, topography, parent material and climate. As a result, we propose a set of indicators that allow for time- and cost-efficient estimates of actual and potential SOC storage from the local to the regional and subcontinental scale. As a key element, the fine mineral fraction was identified to determine SOC stabilization in most soils. The quantification of SOC can be further refined by including climatic proxies, particularly elevation, as well as information on land use, soil management and vegetation characteristics. To enhance its indicative power towards land management effects, further “functional soil characteristics”, particularly soil structural properties and changes in the soil microbial biomass pool should be included in this indicator system. The proposed system offers the potential to efficiently estimate the SOC storage capacity by means of simplified measures, such as soil fractionation procedures or infrared spectroscopic approaches.
    Keywords: Clay Mineralogy ; Specific Surface Area ; Metal Oxides ; Microorganisms ; Soil Fauna ; Soil Aggregation ; Soil Texture ; Soil Type ; Natural Vegetation ; Land Use and Management ; Topography ; Parent Material ; Climate ; Agriculture
    ISSN: 0016-7061
    E-ISSN: 1872-6259
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Journal of Plant Nutrition and Soil Science, October 2019, Vol.182(5), pp.772-781
    Description: Archived soil samples are a valuable tool for any long‐term soil research. We analysed total carbon (C) and nitrogen (N) content and soil organic matter fractions in 38 archived soil samples that were stored for up to 21 years and compared air‐dried storage to frozen storage conditions. Samples include top‐ and upper subsoils, different soil texture and land use with C contents between 4.3 and 174 mg g. The results from this study reveal no changes in total C and N contents with storage time up to 21 years or type of storage (freezing . air drying). The analyses of soil physical fractions also revealed no significant differences between air‐dried stored and frozen stored samples for most samples. However, we found indications, that freezing of soil material might lead to changes in the mineral fractions for soils containing high amounts of water. Therefore, and as archiving soils in a frozen state is more expensive than storing air‐dried samples, we recommend the use of air‐dried samples for C quality analyses of archived soil samples.
    Keywords: Density Fractionation ; Long‐Term Experiments ; Soil Archive ; Soil Organic Carbon ; Storage Conditions
    ISSN: 1436-8730
    E-ISSN: 1522-2624
    Source: John Wiley & Sons, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages