Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Vadose Zone Journal, 2015, Vol.14(5), p.0
    Description: The guest editors introduce the seven contributions to the special issue on processes in capillary fringes, with a focus on the complex interaction of biological, chemical, and physical processes in this environemnt. Processes in capillary fringes (CFs) have a complex nature due to the interactions between the solid, liquid, and gaseous environments. Despite a considerable body of literature on CFs coming from different disciplines, the ongoing processes and their complex interactions are yet only partially understood.
    Keywords: Soils ; Solids ; Vadose Water ; Methods and Instruments ; General;
    ISSN: Vadose Zone Journal
    E-ISSN: 1539-1663
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Vadose Zone Journal, 2011, Vol.10(2), p.654
    Description: The unsaturated hydraulic conductivity function is the dominant material property for modeling soil water dynamics. Because it is difficult to measure directly, it is often derived from the water retention characteristic combined with a geometric model of the pore space. In this study, we developed an automated, simple multistep flux (MSF) experiment to directly measure unsaturated conductivities, K(psi (sub m) ), at a number of water potentials, psi (sub m) , using the experimental setup of classical multistep outflow (MSO) experiments. In contrast to the MSO experiment, the MSF experiment measures the conductivity directly at a spatially constant water potential assuming macroscopically homogeneous materials. Additionally, the proposed method reveals the hysteresis of K(psi (sub m) ) with respect to increasing and decreasing water potentials as well as the temporal dynamics of K(psi (sub m) ) during transient-flow conditions. This temporal behavior is explained by the dynamics of fluid configurations at the pore scale during drainage and imbibition leading to hydraulic nonequilibrium. It may provoke a systematic underestimation of hydraulic conductivity using inverse optimization of K(psi (sub m) ) based on classical MSO experiments. The new approach will improve the determination of K(psi (sub m) ) and it provides an experimental tool to quantify the effects of hydraulic nonequilibrium under transient conditions.
    Keywords: Hydrogeology ; Experimental Studies ; Geometry ; Ground Water ; Hydraulic Conductivity ; Hysteresis ; Inverse Problem ; Mathematical Methods ; Measurement ; Models ; Movement ; Optimization ; Phase Equilibria ; Soils ; Unsaturated Zone;
    ISSN: Vadose Zone Journal
    E-ISSN: 1539-1663
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Vadose Zone Journal, 2011, Vol.10(3), p.1082
    Description: Predicting solute transport through structured soil based on observable structural properties of the material has not been accomplished to date. We evaluated a new approach to predicting breakthrough curves (BTCs) of dissolved chemicals in intact structured soil columns based on attributes of the pore structure at hierarchical spatial scales. The methodology centers on x-ray computed microtomography of a hierarchic suite of undisturbed soil samples (diameters 1, 4.6, 7.5, and 16 cm) to identify the network of pores 〉10 mu m in diameter. The pore structure was quantified in terms of pore size distribution, interface area density, and connectivity. The pore size distribution and pore connectivity were used to set up an equivalent pore network model (PNM) for predicting the BTCs of Br (super -) and Brilliant Blue FCF (BB) at unsaturated, steady-state flux. For a structured silt loam soil column, the predictions of Br (super -) tracer breakthrough were within the variation observed in the column experiments. A similarly good prediction was obtained for Br (super -) breakthrough in a sandy soil column. The BB breakthrough observed in the silt loam was dominated by a large variation in sorption (retardation factors between R = 2.9 and 24.2). The BB sorption distribution coefficient, k (sub d) , was measured in batch tests. Using the average k (sub d) in the PNM resulted in an overestimated retardation (R = 28). By contrast, breakthrough of BB in the sandy soil (experimental R = 3.3) could be roughly predicted using the batch test k (sub d) (PNM simulation R = 5.3). The prediction improved when applying a sorption correction function accounting for the deviation between measured interface area density distribution and its realization in the network model (R = 4.1). Overall, the results support the hypothesis that solute transport can be estimated based on a limited number of characteristics describing pore structure: the pore size distribution, pore topology, and pore-solid interfacial density.
    Keywords: Soils ; Bad Lauchstadt Germany ; Boundary Conditions ; Breakthrough Curves ; Bromine ; Central Europe ; Central Germany ; Chemical Dispersion ; Chernozems ; Computed Tomography ; Convection ; Density ; Dye Tracers ; Equations ; Europe ; Experimental Studies ; Fuhrberg Germany ; Germany ; Halogens ; Image Analysis ; Laboratory Studies ; Lower Saxony Germany ; Microtomography ; Minckowski Functions ; Morphology ; Networks ; Podzols ; Porosity ; Quantitative Analysis ; Saxony-Anhalt Germany ; Simulation ; Soils ; Solute Transport ; Spectra ; Tomography ; Topology ; Transport ; X-Ray Spectra;
    ISSN: Vadose Zone Journal
    E-ISSN: 1539-1663
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Vadose Zone Journal, 2013, Vol.12(4), p.0
    Description: The hydraulic behavior of soil is determined by its hydraulic properties and their variability in space. In agricultural soils, this heterogeneity may stem from tillage or may have natural origin. The root distribution of plants will adapt to some extent to this soil heterogeneity. However, the combined impact of soil heterogeneity and root water uptake (RWU) on long-term soil water budgets has not received much attention. Numerical experiments helped identify how soil heterogeneity affects plant transpiration, soil evaporation, and groundwater recharge. Two-dimensional virtual soils with hierarchical heterogeneity, both natural and tillage induced, served as a basis for modeling soil water dynamics for a 10-yr climate record from two weather stations in Germany that vastly differ in annual precipitation. The complex interactions between soil and vegetation were explored by (i) comparing different RWU strategies (depth-, structure-, and time-dependent root profiles), (ii) land use types (perennial grass and annual winter crops), (iii) a combination of textures (silt above sand and sand above loam), and (iv) RWU with or without a compensation mechanism. The simulations were repeated with one-dimensional, effective representations of these virtual soils. In the framework of hydropedology, this study shed some light on the interaction between plants and pedological features and its impact on the macroscopic soil water budget. We demonstrated that land use has a major impact on the annual water balance through the partitioning of evapotranspiration into bare soil evaporation and plant transpiration. Compensational RWU becomes important for the annual water balance when the root zone comprises contrasting materials with respect to water holding capacity. Soil heterogeneity has in fact a minor impact on long-term soil water budgets. As a consequence, the relative contribution of plant transpiration, soil evaporation, and groundwater recharge to the total soil water loss was well reproduced by simulations in one-dimensional effective soil profiles. This advocates the application of one-dimensional soil-atmosphere-vegetation transfer (SVAT) models at larger scales. These findings only hold for assumptions made in our numerical simulations including flat area without lateral flow and no macropore flow.
    Keywords: Environmental Geology ; Soils ; Atmosphere ; Boundary Conditions ; Central Europe ; Eastern Germany ; Europe ; Field Studies ; Germany ; Grain Size ; Heterogeneity ; Hydrodynamics ; Hydrology ; Hydropedology ; Julicher Borde Germany ; Land Use ; Magdeburg Germany ; Mapping ; North Rhine-Westphalia Germany ; Numerical Models ; One-Dimensional Models ; Rhizosphere ; Saxony-Anhalt Germany ; Scale Factor ; Size Distribution ; Soil-Atmosphere-Vegetation Transfer ; Soils ; Topography ; Two-Dimensional Models ; Unsaturated Zone ; Vegetation ; Water Balance ; Western Germany;
    ISSN: Vadose Zone Journal
    E-ISSN: 1539-1663
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Vadose Zone Journal, 2013, Vol.12(3), p.0
    Description: Soils are structured on multiple spatial scales, originating from inhomogeneities of the parent material, pedogenesis, soil organisms, plant roots, or tillage. This leads to heterogeneities that cause variability of local measurements of hydraulic state variables and affects the flow behavior of water in soil. Whereas in real-world systems, the true underlying structures can never be absolutely known, it is appealing to employ synthetic or "virtual" experiments for assessing general properties of flow in porous media and grasping the main physical mechanisms. With this aim, three two-dimensional virtual realities with increasing structural complexity, representing cultivated soils with hierarchical spatial heterogeneity on multiple scales were constructed by the interdisciplinary research group Virtual Institute of the Helmholtz Association (INVEST). At these systems, numerical simulations of water dynamics including a heavy rain, a redistribution, and a long-lasting evaporation period were performed. The technical aspects of the construction of the virtual soils and results of the forward simulations have been presented in a paper by Schluter et al. (2012). In this follow-up paper, we use inverse modeling to investigate measurements in virtual vertical soil profiles, mimicking typical field monitoring campaigns with moisture content and matric potential sensors placed at five depths. Contrary to the real situation, we can interpret observed data, their variability, estimated hydraulic properties, and predicted water balance in the light of the known truth. Our results showed that measurements, particularly those of water contents, varied strongly with measuring position. Using data from single profiles in systems similar to our virtual soils thus will lead to very different estimates of the soil hydraulic properties. As a consequence, the correct calculation of the water balance is rather a lucky coincidence than the rule. However, the average of the predicted water balances obtained from the one-dimensional simulations, and the estimated soil hydraulic properties agreed very well with those attained from the two-dimensional systems.
    Keywords: Soils ; Hydrogeology ; Boundary Interactions ; Evaporation ; Grain Size ; Heterogeneous Materials ; Hydrodynamics ; Infiltration ; Interpretation ; Inverse Problem ; Irrigation ; Matric Head ; Measurement ; Moisture ; One-Dimensional Models ; Quantitative Analysis ; Simulation ; Size Distribution ; Soils ; Spatial Distribution ; Tdr Data ; Two-Dimensional Models ; Unsaturated Zone ; Van Genuchten-Mualem Parameters ; Water ; Water Balance;
    ISSN: Vadose Zone Journal
    E-ISSN: 1539-1663
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Vadose Zone Journal, 2012, Vol.11(3), p.0
    Description: The rhizosphere has a controlling role in the flow of water and nutrients from soil to plant roots; however, its hydraulic properties are not well understood. As roots grow, they change the pore size distribution of the surrounding soil. Roots release polymeric substances such as mucilage into their rhizosphere. Microorganisms living in the rhizosphere feed on these organic materials and release other polymeric substances into the rhizosphere. The presence of these organic materials might affect the water retention properties and the hydraulic conductivity of the rhizosphere soil during drying and rewetting. We used neutron radiography to monitor the dynamics of water distribution in the rhizosphere of lupin (Lupinus albus L.) plants during a period of drying and rewetting. The rhizosphere was shown to have a higher water content than the bulk soil during the drying period but a lower one during the subsequent rewetting. We evaluated the wettability of the bulk soil and the rhizosphere soil by measuring the contact angle of water in the soil. We found significantly higher contact angles for the rhizosphere soil than the bulk soil after drying, which indicates slight water repellency in the rhizosphere. This explains the lower soil water content in the rhizosphere than the bulk soil after rewetting. Our results suggest that the water holding capacity of the rhizosphere is dynamic and might shift toward higher or lower values than those of the surrounding bulk soil, not affected by roots, depending on the history of drying and rewetting cycles.
    Keywords: Soils ; Hydrogeology ; Absorption ; Carbohydrates ; Compactness ; Concentration ; Ecology ; Habitat ; Hydraulic Conductivity ; Hydrologic Cycle ; Hydrology ; Hydrophobic Materials ; Imagery ; Lipids ; Lupinus Albus ; Measurement ; Microorganisms ; Moisture ; Nuclear Magnetic Resonance ; Nutrients ; Organic Compounds ; Physical Properties ; Plantae ; Polymers ; Polysaccharides ; Porosity ; Rhizosphere ; Roots ; Soil Profiles ; Soil-Water Balance ; Soils ; Spectroscopy ; Tomography ; Wettability ; X-Ray Data;
    ISSN: Vadose Zone Journal
    E-ISSN: 1539-1663
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Vadose Zone Journal, 2014, Vol.13(8), p.0
    Description: Root system architecture and associated root–soil interactions exhibit large changes over time. Nondestructive methods for the quantification of root systems and their temporal development are needed to improve our understanding of root activity in natural soils. X-ray computed tomography (X-ray CT) was used to visualize and quantify growth of a single Vicia faba L. root system during a drying period. The plant was grown under controlled conditions in a sandy soil mixture and imaged every second day. Minkowski functionals and Euclidean distance transform were used to quantify root architectural traits. We were able to image the root system with water content decreasing from 29.6 to 6.75%. Root length was slightly underestimated compared with destructive measurements. Based on repeated measurements over time it was possible to quantify the dynamics of root growth and the demography of roots along soil depth. Measurement of Euclidean distances from any point within the soil to the nearest root surface yielded a frequency distribution of travel distances for water and nutrients towards roots. Our results demonstrate that a meaningful quantitative characterization of root systems and their temporal dynamics is possible.
    Keywords: Agriculture;
    ISSN: Vadose Zone Journal
    E-ISSN: 1539-1663
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Vadose Zone Journal, 2012, Vol.11(4), p.0
    Description: The hydraulic behavior of soil is determined by the spatial heterogeneity of its hydraulic properties. The interplay among parent material, pedogenesis, and tillage leads to characteristic structures in cultivated soils. Tillage-induced features like a loosely aggregated seed bed, a compacted plow pan, and soil compaction beneath tractor ruts overlay natural features such as facies and horizons. Assessing the impact of such structural components on vadose zone hydrology requires an observation scale of several meters and a resolution in the range of centimeters, which is not feasible with experimental setups. An alternative solution is the generation of synthetic but realistic structures and their hydraulic properties as a basis for modeling the hydraulic behavior in response to different boundary conditions. With such "virtual soils" at hand, comparative studies are possible that help explore the relation between soil architecture and soil function. We developed a structure generator that provides great flexibility in the design of virtual soils with nested heterogeneity. Virtual soils with increasing complexity were generated to explore scenarios of precipitation and evaporation for a period of several months. The simulations demonstrated that the structure and the hydraulic properties close to the soil surface originating from tillage clearly govern atmospheric boundary fluxes, while the impact of heterogeneity on groundwater recharge is more complex due to threshold effects, hydraulic nonequilibrium, and the interaction with atmospheric forcing. A comparison with one-dimensional, effective representations of these virtual soils demonstrated that upscaling of soil water dynamics becomes inaccurate when lateral fluxes become relevant at the scale of observation.
    Keywords: Hydrogeology ; Soils ; Agriculture ; Air ; Aquifers ; Boundary Conditions ; Ground Water ; Heterogeneity ; Hydraulic Conductivity ; Hydrodynamics ; Moisture ; Morphology ; Recharge ; Simulation ; Soil-Atmosphere Interface ; Soils ; Tillage ; Topsoil ; Unsaturated Zone ; Virtual Reality ; Water;
    ISSN: Vadose Zone Journal
    E-ISSN: 1539-1663
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Vadose Zone Journal, 2011, Vol.10(3), p.988
    Description: Recent studies have shown that rhizosphere hydraulic properties may differ from those of the bulk soil. Specifically, mucilage at the root-soil interface may increase the rhizosphere water holding capacity and hydraulic conductivity during drying. The goal of this study was to point out the implications of such altered rhizosphere hydraulic properties for soil-plant water relations. We addressed this problem through modeling based on a steady-rate approach. We calculated the water flow toward a single root assuming that the rhizosphere and bulk soil were two concentric cylinders having different hydraulic properties. Based on our previous experimental results, we assumed that the rhizosphere had higher water holding capacity and unsaturated conductivity than the bulk soil. The results showed that the water potential gradients in the rhizosphere were much smaller than in the bulk soil. The consequence is that the rhizosphere attenuated and delayed the drop in water potential in the vicinity of the root surface when the soil dried. This led to increased water availability to plants, as well as to higher effective conductivity under unsaturated conditions. The reasons were two: (i) thanks to the high unsaturated conductivity of the rhizosphere, the radius of water uptake was extended from the root to the rhizosphere surface; and (ii) thanks to the high soil water capacity of the rhizosphere, the water depletion in the bulk soil was compensated by water depletion in the rhizosphere. We conclude that under the assumed conditions, the rhizosphere works as an optimal hydraulic conductor and as a reservoir of water that can be taken up when water in the bulk soil becomes limiting.
    Keywords: Agriculture;
    ISSN: Vadose Zone Journal
    E-ISSN: 1539-1663
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Vadose Zone Journal, 2009, Vol.8(3), p.805
    Description: It has been speculated that during periods of water deficit, roots may shrink and lose contact with the soil, with a consequent reduction in root water uptake. Due to the opaque nature of soil, however, this process has never been observed in situ for living plants. Through x-ray tomography and image analysis, we have demonstrated the formation and dynamics of air gaps around roots. The high spatial resolution required to image the soil–root gaps was achieved by combining tomography of the entire sample (field of view of 16 by 16 cm, pixel side 0.32 mm) with local tomography of the soil region around the roots (field of view of 5 by 5 cm, pixel side 0.09 mm). For a sandy soil, we found that when the soil dries to a water content of 0.025 m3 m–3, gaps occur around the taproot and the lateral roots of lupin (Lupinus albus L.). Gaps were larger for the taproot than the laterals and were caused primarily by root shrinkage rather than by soil shrinkage. When the soil was irrigated again, the roots swelled, partially refilling the gaps; however, large gaps persisted in the more proximal, older part of the taproot. Gaps are expected to reduce water transfers between soil and roots. Opening and closing of gaps may help plants to prevent water loss when the soil dries, and to restore the soil–root continuity when water becomes available. The persistence of gaps in the more proximal parts is one reason why roots preferentially take up water from their more distal parts. ; Includes references ; p. 805-809.
    Keywords: Soil Water Content ; Roots ; Soil-Plant Interactions ; Shrinkage ; Plants ; Translocation (Plant Physiology) ; Lupinus Albus ; Forage Legumes ; Spatial Variation ; Drought ; Water Stress ; Sandy Soils ; Water Uptake ; Computed Tomography ; Forage Crops ; Image Analysis ; Taproots;
    ISSN: Vadose Zone Journal
    E-ISSN: 1539-1663
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages