Kooperativer Bibliotheksverbund

Berlin Brandenburg


Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Language: English
    In: Infection and immunity, May 2016, Vol.84(5), pp.1514-1525
    Description: Haemophilus ducreyi causes the sexually transmitted disease chancroid in adults and cutaneous ulcers in children. In humans, H. ducreyi resides in an abscess and must adapt to a variety of stresses. Previous studies (D. Gangaiah, M. Labandeira-Rey, X. Zhang, K. R. Fortney, S. Ellinger, B. Zwickl, B. Baker, Y. Liu, D. M. Janowicz, B. P. Katz, C. A. Brautigam, R. S. MunsonJr, E. J. Hansen, and S. M. Spinola, mBio 5:e01081-13, 2014, http://dx.doi.org/10.1128/mBio.01081-13) suggested that H. ducreyi encounters growth conditions in human lesions resembling those found in stationary phase. However, how H. ducreyi transcriptionally responds to stress during human infection is unknown. Here, we determined the H. ducreyi transcriptome in biopsy specimens of human lesions and compared it to the transcriptomes of bacteria grown to mid-log, transition, and stationary phases. Multidimensional scaling showed that the in vivo transcriptome is distinct from those of in vitro growth. Compared to the inoculum (mid-log-phase bacteria), H. ducreyi harvested from pustules differentially expressed ∼93 genes, of which 62 were upregulated. The upregulated genes encode homologs of proteins involved in nutrient transport, alternative carbon pathways (l-ascorbate utilization and metabolism), growth arrest response, heat shock response, DNA recombination, and anaerobiosis. H. ducreyi upregulated few genes (hgbA, flp-tad, and lspB-lspA2) encoding virulence determinants required for human infection. Most genes regulated by CpxRA, RpoE, Hfq, (p)ppGpp, and DksA, which control the expression of virulence determinants and adaptation to a variety of stresses, were not differentially expressed in vivo, suggesting that these systems are cycling on and off during infection. Taken together, these data suggest that the in vivo transcriptome is distinct from those of in vitro growth and that adaptation to nutrient stress and anaerobiosis is crucial for H. ducreyi survival in humans.
    Keywords: Adaptation, Physiological ; Gene Expression Profiling ; Stress, Physiological ; Carbon -- Metabolism ; Chancroid -- Microbiology ; Haemophilus Ducreyi -- Physiology
    ISSN: 00199567
    E-ISSN: 1098-5522
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Description: Indiana University-Purdue University Indianapolis (IUPUI) Haemophilus ducreyi causes chancroid, a sexually transmitted genital ulcerative disease that facilitates the transmission of HIV-1. H. ducreyi also causes non-sexually transmitted cutaneous ulcers in children in tropical regions. During human infection, H. ducreyi is subject to a variety of stresses. The stringent response is a bacterial stress response system induced by nutrient limiting conditions and mediated by guanosine tetra- and pentaphosphate [(p)ppGpp] and the transcriptional regulator DksA. (p)ppGpp and DksA jointly interact with RNA polymerase to regulate genes critical for bacterial survival. We hypothesized that the stringent response is required for H. ducreyi virulence in humans. A ΔrelAΔspoT mutant, which is unable to synthesize (p)ppGpp, was partially attenuated for abscess formation in human volunteers. Loss of (p)ppGpp increased bacterial resistance to phagocytosis and stationary phase survival; however, the mutant was more sensitive to oxidative stress. A ΔdksA mutant was also partially attenuated in humans. The ΔdksA mutant behaved like the (p)ppGpp mutant in stationary phase survival and sensitivity to oxidative stress, but exhibited decreased resistance to phagocytosis. Both mutants had decreased adherence to fibroblasts, but the mechanisms underlying the adherence defect were distinct. To better understand the roles of (p)ppGpp and DksA in regulating gene expression, we performed transcriptome analysis of the parent and mutant strains. (p)ppGpp and DksA deficiency resulted in dysregulation of multiple genes including several known virulence determinants. At stationary phase, (p)ppGpp and DksA targets were not identical but significantly overlapped; as the mutants were phenotypically distinct, this finding underscores both the unique and joint roles DksA and (p)ppGpp play in regulation of H. ducreyi virulence. We conclude that (p)ppGpp and DksA play significant roles in H. ducreyi pathogenesis. This is the first study to show that the stringent response has a direct role in the ability of a bacterial pathogen to cause disease in humans.
    Keywords: Haemophilus Ducreyi ; Humans ; Pathogenesis ; Stringent Response ; Virulence ; Haemophilus Ducreyi ; Chancroid -- Etiology ; Sexually Transmitted Diseases ; Haemophilus Infections ; Rna Polymerases ; Transcription ; Mutation -- Genetics
    Source: Networked Digital Library of Theses and Dissertations
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages