Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Water Resources Research, November 2018, Vol.54(11), pp.9033-9044
    Description: Structural hierarchy is a fundamental characteristic of natural porous media. Yet it provokes one of the grand challenges for the modeling of fluid flow and transport since pore‐scale structures and continuum‐scale domains often coincide independent of the observation scale. Common approaches to represent structural hierarchy build, for example, on a multidomain continuum for transport or on the coupling of the Stokes equations with Darcy's law for fluid flow. These approaches, however, are computationally expensive or introduce empirical parameters that are difficult to derive with independent observations. We present an efficient model for fluid flow based on Darcy's law and the law of Hagen‐Poiseuille that is parameterized based on the explicit pore space morphology obtained, for example, by X‐ray μ‐CT and inherently permits the coupling of pore‐scale and continuum‐scale domain. We used the resulting flow field to predict the transport of solutes via particle tracking across the different domains. Compared to experimental breakthrough data from laboratory‐scale columns with hierarchically structured porosity built from solid glass beads and microporous glass pellets, an excellent agreement was achieved without any calibration. Furthermore, we present different test scenarios to compare the flow fields resulting from the Stokes‐Brinkman equations and our approach to comprehensively illustrate its advantages and limitations. In this way, we could show a striking efficiency and accuracy of our approach that qualifies as general alternative for the modeling of fluid flow and transport in hierarchical porous media, for example, fractured rock or karstic aquifers. A model for the simulation of pore‐scale and continuum‐scale flow in hierarchically structured porous media is developed Explicit pore space morphology obtained by image analysis of X‐ray micro‐CT images is used for parameterization Predictions of solute breakthrough obtained by particle tracking perfectly match observations
    Keywords: Darcy'S Law ; Particle Tracking ; Column Experiments ; X‐Ray Μ‐Ct ; Pore Space Morphology ; Image Analysis
    ISSN: 0043-1397
    E-ISSN: 1944-7973
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Ecohydrology, September 2018, Vol.11(6), pp.n/a-n/a
    Description: By applying the newly developed flow cell (FC) concept, this study investigated the impact of small‐scale spatial variations (millimetre to centimetre) in organic matter (OM) composition (diffusive reflectance infrared Fourier transform spectroscopy), biological activity (zymography), and wettability (contact angle [CA]) on transport processes (tracer experiments, radiography). Experiments were conducted in five undisturbed soil slices (millimetre apart), consisting of a sandy matrix with an embedded loamy band. In the loamy band increased enzyme activities and OM (10 mm apart) were found compared with the sand matrix, with no interrelations although spatial autocorrelation ranges were up to 7 cm. CAs were increased (0–110°) above the loamy band and were negatively correlated with acid phosphatase. Missing correlations were probably attributed to texture variations between soil slices. A general correlation between CA and C content (bulk) were confirmed. Variability in texture and hydraulic properties led to the formation of heterogeneous flow patterns and probably to heterogeneously distributed interfacial properties. The new FC concept allows process evaluation on the millimetre scale to analyse spatial relations, that is, between small‐scale textural changes on transport processes and biological responses. The concept has been proved as a versatile tool to analyse spatial distribution of biological and interfacial soil properties in conjunction with the analysis of complex micro‐hydraulic processes for undisturbed soil samples. The concept may be improved by additional nondestructive imaging methods, which is especially challenging for the detection of small‐scale textural changes.
    Keywords: Drift Spectroscopy ; Extracellular Enzyme Activity ; Flow Cell ; Soil Water Repellency ; Transport Processes ; Undisturbed Soil ; X‐Ray Radiography
    ISSN: 1936-0584
    E-ISSN: 1936-0592
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Geoderma, 01 September 2018, Vol.325, pp.37-48
    Description: Organic particles including microorganisms are a significant fraction of the mobile organic matter (MOM) pool that contributes to initial pedogenesis. Still, the dynamics and the interplay of the multitude of processes that control the mobilization, transport, and retention of MOM are vastly unclear. We studied this interplay using an ‘artificial soil’ as model for a young, unstructured soil with defined initial composition employing a novel two-layer column experiment. The upstream layer was composed of a mixture of well-defined mineral phases, a sterile organic matter source and a diverse, natural microbial inoculant mimicking an organic-rich topsoil. The downstream layer, mimicking the subsoil, was composed of the mineral phases, only. Columns were run under water-unsaturated flow conditions with multiple flow interruptions to reflect natural flow regimes and to detect possible non-equilibrium processes. Pore system changes caused by flow were inspected by scanning electron microscopy and computed micro-tomography. MOM-related physicochemical effluent parameters and bacterial community diversity and abundance were assessed by molecular analysis of the effluent and the solid phase obtained after the long-term irrigation experiment (75 d). Tomographic data showed homogeneous packing of the fine-grained media (sandy loam). During flow, the initially single-grain structured artificial soil showed no connected macropores. In total, 6% of the initial top layer organic matter was mobile. The release and transport of particulate (1.2%) and dissolved organic matter (4.8%) including bacteria were controlled by non-equilibrium conditions. Bacterial cells were released and selectively transported to downstream layer resulting in a depth-dependent and selective establishment of bacterial communities in the previously sterile artificial soil. This study underlines the importance of bacterial transport from the surface or topsoil for colonization and maturation of downstream compartments. This initial colonization of pristine surfaces is the major step in forming biogeochemical interfaces - the prominent locations of intensive biological activity and element turnover that seem to play a major role for the functioning of soil.
    Keywords: Mobile Organic Matter ; Unsaturated Two-Layer Column Experiment ; Experimental Pedogenesis ; Artificial Soil ; Computed Micro-Tomography ; Molecular Analysis ; Agriculture
    ISSN: 0016-7061
    E-ISSN: 1872-6259
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages