Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Transport
Type of Medium
Language
Year
  • 1
    Language: English
    In: Water Research, 01 May 2013, Vol.47(7), pp.2572-2582
    Description: Saturated sand-packed column experiments were conducted to investigate the influence of physicochemical factors on the transport and retention of surfactant stabilized silver nanoparticles (AgNPs). The normalized concentration in breakthrough curves (BTCs) of AgNPs increased with a decrease in solution ionic strength (IS), and an increase in water velocity, sand grain size, and input concentration ( ). In contrast to conventional filtration theory, retention profiles (RPs) for AgNPs exhibited uniform, nonmonotonic, or hyperexponential shapes that were sensitive to physicochemical conditions. The experimental BTCs and RPs with uniform or hyperexponential shape were well described using a numerical model that considers time- and depth-dependent retention. The simulated maximum retained concentration on the solid phase ( ) and the retention rate coefficient ( ) increased with IS and as the grain size and/or decreased. The RPs were more hyperexponential in finer textured sand and at lower because of their higher values of . Conversely, RPs were nonmonotonic or uniform at higher and in coarser sand that had lower values of , and tended to exhibit higher peak concentrations in the RPs at lower velocities and at higher solution IS. These observations indicate that uniform and nonmonotonic RPs occurred under conditions when was approaching filled conditions. Nonmonotonic RPs had peak concentrations at greater distances in the presence of excess amounts of surfactant, suggesting that competition between AgNPs and surfactant diminished close to the column inlet. The sensitivity of the nonmonotonic RPs to IS and velocity in coarser textured sand indicates that AgNPs were partially interacting in a secondary minimum. However, elimination of the secondary minimum only produced recovery of a small portion (〈10%) of the retained AgNPs. These results imply that AgNPs were largely irreversibly interacting in a primary minimum associated with microscopic heterogeneity. ► The presence of surfactant affected the shape of the retention profiles (RPs). ► RPs transitioned from hyperexponential, to nonmonotonic, and then to uniform. ► Nanoparticles mainly irreversibly interacted with microscopic heterogeneity.
    Keywords: Stabilized Silver Nanoparticles ; Saturated Porous Media ; Time- and Depth-Dependent Retention ; Surfactant ; Competitive Attachment ; Engineering
    ISSN: 0043-1354
    E-ISSN: 1879-2448
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Water Research, 2010, Vol.44(4), pp.1288-1296
    Description: A study was conducted to understand the role of cell concentration and metabolic state in the transport and deposition behaviour of with and without substrate addition. Column experiments using the short-pulse technique (pulse was equivalent to 0.028 pore volume) were performed in quartz sand operating under saturated conditions. For comparison, experiments with microspheres and inactive (killed) bacteria were also conducted. The effluent concentrations, the retained particle concentrations and the cell shape were determined by fluorescent microscopy. For the transport of metabolically-active without substrate addition a bimodal breakthrough curve was observed, which could be explained by the different breakthrough behaviour of the rod-shaped and coccoidal cells of . The 70:30 rod/coccoid ratio in the influent drastically changed during the transport and it was about 20:80 in the effluent and in the quartz sand packing. It was assumed that the active rod-shaped cells were subjected to shrinkage into coccoidal cells. The change from active rod-shaped cells to coccoidal cells could be explained by oxygen deficiency which occurs in column experiments under saturated conditions. Also the substrate addition led to two consecutive breakthrough peaks and to more bacteria being retained in the column. In general, the presence of substrate made the assumed stress effects more pronounced. In comparison to microspheres and inactive (killed) bacteria, the transport of metabolically-active bacteria with and without substrate addition is affected by differences in physiological state between rod-shaped and the formed stress-resistant coccoidal cells of .
    Keywords: Bacteria Transport ; Colloid Deposition ; Cell Morphology ; Physiological State ; Pseudomonas Fluorescens ; Oxygen Stress ; Engineering
    ISSN: 0043-1354
    E-ISSN: 1879-2448
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Water Research, 01 February 2013, Vol.47(2), pp.933-944
    Description: Water-saturated column experiments were conducted to investigate the effect of input concentration ( ) and sand grain size on the transport and retention of low concentrations (1, 0.01, and 0.005 mg L ) of functionalized C-labeled multi-walled carbon nanotubes (MWCNT) under repulsive electrostatic conditions that were unfavorable for attachment. The breakthrough curves (BTCs) for MWCNT typically did not reach a plateau, but had an asymmetric shape that slowly increased during breakthrough. The retention profiles (RPs) were not exponential with distance, but rather exhibited a hyper-exponential shape with greater retention near the column inlet. The collected BTCs and RPs were simulated using a numerical model that accounted for both time- and depth-dependent blocking functions on the retention coefficient. For a given , the depth-dependent retention coefficient and the maximum solid phase concentration of MWCNT were both found to increase with decreasing grain size. These trends reflect greater MWCNT retention rates and a greater number of retention locations in the finer textured sand. The fraction of the injected MWCNT mass that was recovered in the effluent increased and the RPs became less hyper-exponential in shape with higher due to enhanced blocking/filling of retention locations. This concentration dependency of MWCNT transport increased with smaller grain size because of the effect of pore structure and MWCNT shape on MWCNT retention. In particular, MWCNT have a high aspect ratio and we hypothesize that solid phase MWCNT may create a porous network with enhanced ability to retain particles in smaller grain sized sand, especially at higher . Results demonstrate that model simulations of MWCNT transport and fate need to accurately account for observed behavior of both BTCs and RPs. ► Breakthrough curves and retention profiles were measured and numerically modeled. ► We used very low (0.005–1 mg L ) input concentrations of carbon nanotubes (CNTs). ► Breakthrough of CNTs increased with increasing input concentration and grain size. ► Data were simulated well using time- and depth-dependent retention coefficients. ► Model predictions indicate the transport of CNTs to distances greater than 12 cm.
    Keywords: Carbon Nanotubes ; Column Experiments ; Quartz Sand ; Breakthrough Curves ; Retention Profiles ; Transport Modeling ; Engineering
    ISSN: 0043-1354
    E-ISSN: 1879-2448
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Environmental Pollution, July 2018, Vol.238, pp.1027-1034
    Description: Undisturbed outdoor lysimeters containing arable loamy sand soil were used to examine the influence of either heavy rain events (high frequency of high rain intensity), steady rain (continuous rainfall of low rain intensity), and natural rainfall on the transport and retention of surfactant-stabilized silver nanoparticles (AgNP). In addition, the AgNP soil associations within the A horizon were analyzed by means of particle-size fractionation, asymmetrical flow field-flow fractionation coupled with UV/Vis-detection and inductively coupled plasma mass spectrometer (AF4-UV/Vis-ICP-MS), and transmission electron microscopy coupled to an energy-dispersive X-ray (TEM-EDX) analyzer. The results showed that AgNP breakthrough for all rain events was less than 0.1% of the total AgNP mass applied, highlighting that nearly all AgNP were retained in the soil. Heavy rain treatment and natural rainfall revealed enhanced AgNP transport within the A horizon, which was attributed to the high pore water flow velocities and to the mobilization of AgNP–soil colloid associations. Particle-size fractionation of the soil revealed that AgNP were present in each size fraction and therefore indicated strong associations between AgNP and soil. In particular, water-dispersible colloids (WDC) in the size range of 0.45–0.1 μm were found to exhibit high potential for AgNP attachment. The AF4-UV/Vis-ICP-MS and TEM-EDX analyses of the WDC fraction confirmed that AgNP were persistent in soil and associated to soil colloids (mainly composed of Al, Fe, Si, and organic matter). These results confirm the particularly important role of soil colloids in the retention and remobilization of AgNP in soil. Furthermore, AF4-UV/Vis-ICP-MS results indicated the presence of single, homo-aggregated, and small AgNP probably due to dissolution.
    Keywords: Silver Nanoparticles ; Transport ; Retention ; Rain Events ; Soil Colloids ; Engineering ; Environmental Sciences ; Anatomy & Physiology
    ISSN: 0269-7491
    E-ISSN: 1873-6424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Journal of Hydrology, May 2015, Vol.524, pp.680-695
    Description: Spatially highly resolved mapping of aquifer heterogeneities is critical for the accurate prediction of groundwater flow and contaminant transport. Here, we demonstrate the value of using full-waveform inversion of crosshole ground penetrating radar (GPR) data for aquifer characterization. We analyze field data from the Krauthausen test site, where crosshole GPR data were acquired along a transect of 20 m length and 10 m depth. Densely spaced cone penetration tests (CPT), located close to the GPR transect, were used to validate and interpret the tomographic images obtained from GPR. A strong correlation was observed between CPT porosity logs and porosity estimates derived from GPR using the Complex Refractive Index Model (CRIM). A less pronounced correlation was observed between electrical conductivity data derived from GPR and CPT. Cluster analysis of the GPR data defined three different subsurface facies, which were found to correspond to sediments with different grain size and porosity. In conclusion, our study suggests that full-waveform inversion of crosshole GPR data followed by cluster analysis is an applicable approach to identify hydrogeological facies in alluvial aquifers and to map their architecture and connectivity. Such facies maps provide valuable information about the subsurface heterogeneity and can be used to construct geologically realistic subsurface models for numerical flow and transport prediction.
    Keywords: Heterogeneity ; Aquifer Characterization ; Geophysical Methods ; Ground Penetrating Radar ; Full-Waveform Inversion ; Cone Penetration Tests ; Geography
    ISSN: 0022-1694
    E-ISSN: 1879-2707
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Environmental Pollution, September 2013, Vol.180, pp.152-158
    Description: Column experiments were conducted in undisturbed and in repacked soil columns at water contents close to saturation (85–96%) to investigate the transport and retention of functionalized C-labeled multi-walled carbon nanotubes (MWCNT) in two natural soils. Additionally, a field lysimeter experiment was performed to provide long-term information at a larger scale. In all experiments, no breakthrough of MWCNTs was detectable and more than 85% of the applied radioactivity was recovered in the soil profiles. The retention profiles exhibited a hyper-exponential shape with greater retention near the column or lysimeter inlet and were successfully simulated using a numerical model that accounted for depth-dependent retention. In conclusion, results indicated that the soils acted as a strong sink for MWCNTs. Little transport of MWCNTs is therefore likely to occur in the vadose zone, and this implies limited potential for groundwater contamination in the investigated soils. In undisturbed columns and a lysimeter study, complete retention of functionalized multi-walled carbon nanotubes was found in two soils at environmentally relevant conditions.
    Keywords: Undisturbed Soil ; Carbon Nanotube ; Lysimeter ; Retention Profile ; Transport Modeling ; Engineering ; Environmental Sciences ; Anatomy & Physiology
    ISSN: 0269-7491
    E-ISSN: 1873-6424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Environmental Pollution, February 2017, Vol.221, pp.470-479
    Description: Batch and saturated soil column experiments were conducted to investigate sorption and mobility of two C-labeled contaminants, the hydrophobic chlordecone (CLD) and the sulfadiazine (SDZ), in the absence or presence of functionalized multi-walled carbon nanotubes (MWCNTs). The transport behaviors of CLD, SDZ, and MWCNTs were studied at environmentally relevant concentrations (0.1–10 mg L ) and they were applied in the column studies at different times. The breakthrough curves and retention profiles were simulated using a numerical model that accounted for the advective-dispersive transport of all compounds, attachment/detachment of MWCNTs, equilibrium and kinetic sorption of contaminants, and co-transport of contaminants with MWCNTs. The experimental results indicated that the presence of mobile MWCNTs facilitated remobilization of previously deposited CLD and its co-transport into deeper soil layers, while retained MWCNTs enhanced SDZ deposition in the topsoil layers due to the increased adsorption capacity of the soil. The modeling results then demonstrated that the mobility of engineered nanoparticles (ENPs) in the environment and the high affinity and entrapment of contaminants to ENPs were the main reasons for ENP-facilitated contaminant transport. On the other hand, immobile MWCNTs had a less significant impact on the contaminant transport, even though they were still able to enhance the adsorption capacity of the soil. Experimental and simulated studies demonstrated that both mobile and retained MWCNTs had a significant impact on contaminant (chlordecone and sulfadiazine) transport in soil.
    Keywords: Colloid-Facilitated Contaminant Transport ; Multi-Walled Carbon Nanotubes ; Soil ; Retention Profile ; Numerical Modeling ; Engineering ; Environmental Sciences ; Anatomy & Physiology
    ISSN: 0269-7491
    E-ISSN: 1873-6424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Plant and Soil, 2019, Vol.439(1), pp.273-292
    Description: Background and aims Although modelling of water and nutrient uptake by root systems has advanced considerably in recent years, steep local gradients of nutrient concentration near the root-soil interface in the rhizosphere are still a central challenge for accurate simulation of water and nutrient uptake...
    Keywords: Water uptake ; Nutrient uptake ; Root system architecture ; Root soil modelling ; Multiscale ; Root system scale ; Single root scale ; Rhizosphere
    ISSN: 0032-079X
    E-ISSN: 1573-5036
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Vadose Zone Journal, 2013, Vol.12(4), p.0
    Description: The process description of plant transpiration and soil water uptake in macroscopic root water uptake models is often based on simplifying assumptions that no longer reflect, or even contradict, the current status of knowledge in plant biology. The sink term in the Richards equation for root water uptake generally comprises four terms: (i) a root resistance function, (ii) a soil resistance function, (iii) a stress function, and (iv) a compensation function. Here we propose to use a detailed three-dimensional model, which integrates current knowledge of soil and root water flow equations, to deduct a one-dimensional effective behavior at the plant scale and to propose improvements for the four functions used in the macroscopic sink term. We show that (i) root hydraulic resistance may be well defined by the root length density but only for homogeneous lateral conductances and no limiting xylem conductance--in other cases a new function depending on the root hydraulic architecture should be used; (ii) soil resistance cannot be neglected, in particular in the rhizosphere where specific processes may occur that alter the soil hydraulic properties and therefore affect uptake; (iii) stress and compensation are two different processes, which should not be linked explicitly; (iv) there is a need for a clear definition of compensatory root water uptake independent of water stress; (v) stress functions should be defined as a maximal actual transpiration in function of an integrated root-soil interface water head rather than in terms of local bulk water heads; and (vi) nonlinearity in the stress function is expected to arise if root hydraulic resistances depend on soil matric head or when it is defined as a function of the bulk soil water head.
    Keywords: Soils ; Biogenic Processes ; Critical Review ; Darcy'S Law ; Equations ; Mathematical Models ; Models ; Movement ; One-Dimensional Models ; Processes ; Review ; Rhizosphere ; Roots ; Scale Factor ; Soils ; Solute Transport ; Three-Dimensional Models ; Transport ; Unsaturated Zone ; Water;
    ISSN: Vadose Zone Journal
    E-ISSN: 1539-1663
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Vadose Zone Journal, 2013, Vol.12(2), p.0
    Description: We investigated the eff ects of a drying front that emerges below an evaporating soil surface on the far-field ground-penetrating radar (GPR) data. First, we performed an analysis of the width of the drying front in soils with 12 diff erent textures by using an analytical model. Then, we numerically simulated vertical soil moisture profiles that develop during evaporation for the soil textures. We performed the simulations using a Richards flow model that considers only liquid water flow and a model that considers coupled water, vapor, and heat flows. The GPR signals were then generated from the simulated soil water content profiles taking into account the frequency dependency of apparent electrical conductivity and dielectric permitivity. The analytical approach indicated that the width of the drying front at the end of Stage I of the evaporation was larger in silty soils than in other soil textures and smaller in sandy soils. We also demonstrated that the analytical estimate of the width of the drying front can be considered as a proxy for the impact that a drying front could have on far-field GPR data. The numerical simulations led to the conclusion that vapor transport in soil resulted in S-shaped soil moisture profiles, which clearly influenced the GPR data. As a result, vapor flow needs to be considered when GPR data are interpreted in a coupled inversion approach. Moreover, the impact of vapor flow on the GPR data was larger for silty than for sandy soils. These effects on the GPR data provide promising perspectives regarding the use of radars for evaporation monitoring.
    Keywords: Agriculture;
    ISSN: Vadose Zone Journal
    E-ISSN: 1539-1663
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages