Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Procedia Environmental Sciences, 2010, Vol.2, pp.720-724
    Description: The system analysis of urban metabolic system, still a black box in urban research, has been underlined recently due to its important role in assessing the sustainability of urban ecosystem. An interpretation of the information indices from ecological network analysis when combined with urban metabolic research, however, has not been addressed systematically. In this study, a conceptual network model of urban metabolic systems was developed based on the identification of seven compartments. Emergy analysis and extended exergy analysis were introduced in order to define the proper way of quantifying the material and energy flows within the system. After that, the information indices derived from ecological network analysis such as developmental capacity, ascendancy, overload were proposed as the potential indicators reflecting the sustainability of urban development. An interpretation of these information indices when embedded into urban metabolic system was conducted to further demonstrate their potential application to urban research. With the qualification and interpretation of these information indices from network analysis, this study may provide some lights on unfolding the black box.
    Keywords: Urban Metabolism ; Ecological Network Analysis ; Ascendancy ; Overhead ; Environmental Sciences
    ISSN: 1878-0296
    E-ISSN: 1878-0296
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Science of the Total Environment, 15 February 2016, Vol.544, pp.103-113
    Description: In this paper, we construct a spatially explicit model of carbon metabolism for the flows of carbon among the components of an urban area. We used the model to identify spatial heterogeneity in the ecological relationships within a carbon metabolic network. We combined land-use and cover type maps for Beijing from 1990 to 2010 with empirical coefficients and socioeconomic data to quantify the flows. We used utility analysis to determine the ecological relationships between the components of the system and analyzed their changes during urban development. We used ArcGIS to analyze their spatial variation. We found that the positive utilities in Beijing decreased over time and that negative relationships mostly outweighed positive relationships after 2000. The main ecological relationships were distributed throughout the entire urban area before 2000; subsequently, exploitation, control, and mutualism relationships became concentrated in the southeast, leaving competition relationships to dominate the northwest. Mutualism relationships were most common for natural components, but were not stable because they were easily disturbed by urban expansion. Transportation and industrial land and urban land were the most important contributors to exploitation and control relationships and may be important indicators of spatial adjustment. Increasing competition relationships unbalanced the carbon metabolism, and limitations on the area of land available for development and on the water resources led to increasingly serious competition. The results provide an objective basis for planning adjustments to Beijing's land-use patterns to improve its carbon metabolism and reduce carbon emission.
    Keywords: Urban Metabolism ; Ecological Relationships ; Ecological Network Analysis ; Spatial Analysis ; Land-Use and Cover Change ; Carbon Emission ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Ecological Modelling, 24 January 2014, Vol.272, pp.188-197
    Description: The efficiency of urban metabolic processes depends on the degree of mutualism of these processes throughout the metabolic system and on the value gained by each compartment within the system. This can be assessed by means of ecological network-based synergism analysis. In this paper, we used material-flow accounting methods to account for the exchanges of resources and wastes among the compartments of an urban system. Using a seven-compartment urban metabolic network model of Beijing, China, as a case study, we examined the degree of synergism of the compartments, determined the nature of the resulting ecological relationships, and determined the flow of utility to each compartment within the system. The results revealed which types of ecological relationship contributed most to the system (here, exploitation) and identified the key compartments that decreased the system's degree of synergism. The results provide theoretical and empirical support for the development of policies designed to promote healthy development of Beijing's urban metabolic system.
    Keywords: Urban Ecology ; Urban Metabolism ; Ecological Network Analysis ; Material Flow Analysis ; Beijing ; Environmental Sciences ; Ecology
    ISSN: 0304-3800
    E-ISSN: 1872-7026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Ecological Modelling, 24 November 2015, Vol.316, pp.144-154
    Description: Global climate change has aroused widespread interest in reducing carbon emissions and increasing carbon sequestration. Thus, an urban carbon inventory must consider both emissions and sequestration. In this context, we analyzed the main contributors to the flows that comprise a city's carbon metabolic processes employing methods and concepts from ecological science. The carbon emissions and sequestration by urban carbon metabolic processes can be compared to ecological catabolism and anabolism, respectively. We used empirical coefficients to estimate the rates of carbon catabolism and anabolism and calculate the resulting carbon imbalance index. Our analysis reveals the contributions of individual metabolic actors and the distribution of the metabolic flows among them. Taking Beijing as a case study, we found that the catabolic rate of the metabolic actors was more than five times the anabolic rate from 1995 to 2010, leading to a carbon imbalance index that was twice the average Chinese level. The major catabolic actors were the other services and domestic sectors. These catabolic rates were primarily influenced by the flows of electricity, heating energy consumption, and mobile energy consumption. The overall carbon imbalance resulted from greatly reduced metabolic flows in farmland anabolism due to conversion of farmland into urban land. Identifying the metabolic actors and flows in this manner will inform government mitigation efforts by identifying where reduction is required and guiding planning of appropriate mitigation actions. Our study also provides directions for conservation of the urban ecological environment.
    Keywords: Urban Metabolism ; Catabolism ; Anabolism ; Technological Metabolism ; Carbon Accounting ; Carbon Imbalance ; Environmental Sciences ; Ecology
    ISSN: 0304-3800
    E-ISSN: 1872-7026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Ecological Modelling, 2010, Vol.221(16), pp.1865-1879
    Description: Urban metabolism research faces difficulties defining ecological trophic levels and analyzing relationships among the metabolic system's energy components. Here, we propose a new way to perform such research. By integrating throughflow analysis with ecological network utility analysis, we used network flows to analyze the metabolic system's network structure and the ecological relationships within the system. We developed an ecological network model for the system, and used four Chinese cities as examples of how this approach provides insights into the flows within the system at both high and low levels of detail. Using the weight distribution in the network flow matrix, we determined the structure of the urban energy metabolic system and the trophic levels; using the sign distribution in the network utility matrix, we determined the relationships between each pair of the system's compartments and their degrees of mutualism. The model uses compartments based on 17 sectors (energy exploitation; coal-fired power; heat supply; washed coal; coking; oil refinery; gas generation; coal products; agricultural; industrial; construction; communication, storage, and postal service; wholesale, retail, accommodation, and catering; household; other consuming; recovery; and energy stocks). Analyzing the structure and functioning of the urban energy metabolic system revealed ways to optimize its structure by adjusting the relationships among compartments, thereby demonstrating how ecological network analysis can be used in future urban system research.
    Keywords: Urban Metabolism ; Energy Metabolism ; Network Analysis ; Throughflow Analysis ; Utility Analysis ; Environmental Sciences ; Ecology
    ISSN: 0304-3800
    E-ISSN: 1872-7026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Journal of Cleaner Production, 10 November 2018, Vol.201, pp.295-307
    Description: Maintaining urban systems consumes a large amount and variety of materials and leads to waste flows. Carbon is a basic element that intuitively characterizes the metabolic characteristics of urban resource consumption and pollution emission. In this study, we integrated the carbon metabolic flows among 18 metabolic actors and between these actors and the atmosphere, and calculated flows of material in many categories using empirically derived coefficients to estimate the associated carbon flows (emission and absorption). Taking Beijing as an example, we analyzed the dynamic changes in the carbon metabolism and the structural characteristics of material utilization. We defined two indices to characterize the metabolism (the carbon imbalance and external dependence indices), and identified key actors responsible for changes in the indices. The total carbon metabolism (inputs and outputs) increased by 64% and 200%, respectively, from 1995 to 2015, mainly driven by energy consumption, which accounted for more than 78% of the total. In addition, input growth was driven by food, accounting for up to 6% of the total. The carbon imbalance and external dependence indices increased to nearly two and four times their 1995 values, respectively, mainly due to the Manufacturing, Electricity and Heat Production, and Energy Conversion actors’ demand for food or energy during the early part of the study period, and by the rapid growth of food or energy required by the Urban Life and Transportation actors. Identifying and comparing the key metabolic actors provided a novel way to analyze data to determine targets for carbon regulation and emission reduction measures for Beijing.
    Keywords: Urban Metabolism ; Carbon Metabolism ; Carbon Imbalance ; External Dependence ; Beijing ; Engineering
    ISSN: 0959-6526
    E-ISSN: 1879-1786
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Science of the Total Environment, 15 January 2014, Vol.468-469, pp.642-653
    Description: If cities are considered as “superorganisms”, then disorders of their metabolic processes cause something analogous to an “urban disease”. It is therefore helpful to identify the causes of such disorders by analyzing the inner mechanisms that control urban metabolic processes. Combining input–output analysis with ecological network analysis lets researchers study the functional relationships and hierarchy of the urban metabolic processes, thereby providing direct support for the analysis of urban disease. In this paper, using Beijing as an example, we develop a model of an urban metabolic system that accounts for the intensity of the embodied ecological elements using monetary input–output tables from 1997, 2000, 2002, 2005, and 2007, and use this data to compile the corresponding physical input–output tables. This approach described the various flows of ecological elements through urban metabolic processes and let us build an ecological network model with 32 components. Then, using two methods from ecological network analysis (flow analysis and utility analysis), we quantitatively analyzed the physical input–output relationships among urban components, determined the ecological hierarchy of the components of the metabolic system, and determined the distribution of advantage-dominated and disadvantage-dominated relationships, thereby providing scientific support to guide restructuring of the urban metabolic system in an effort to prevent or cure urban “diseases”.
    Keywords: Beijing ; Ecological Network ; Physical Input–Output Table ; Urban Ecology ; Urban Metabolism ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Journal of Cleaner Production, 20 January 2016, Vol.112, pp.4304-4317
    Description: In this paper, we develop a spatially explicit model of carbon transfers between regions of an urban area. The carbon transfers represent the metabolic processes due to regional land use changes. We used the model to identify spatial heterogeneity in the carbon metabolic structure, functions, and relationships within the network. Data for Beijing from 1990, 1995, 2000, 2005, and 2010, were combined with empirical coefficients, to construct the network. We used ecological network analysis to analyze the structure and function of the network, and to determine the ecological relationships between the components of the system, their distribution, and their changes over time. The analysis revealed that carbon throughflow of the network decreased and positive relations mostly outweighed negative relations. Exploitation relationships were the dominant type in Beijing during most of the study period, particularly in the northwest before 2000, but moved towards the southeast over time, leaving competition relationships with losses of benefits dominant in the northwest. Mutualism relationships with mainly beneficial carbon flows were dominant in the southeast, increasing in frequency in this region throughout the study period. The results provide a theoretical basis for planning adjustments to the city's structure to achieve low-carbon goals.
    Keywords: Urban Metabolism ; Carbon Emission ; Carbon Sequestration ; Ecological Network Analysis ; Spatial Analysis ; Ecological Relationships ; Engineering
    ISSN: 0959-6526
    E-ISSN: 1879-1786
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages