Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Neoplasia, November 2004, Vol.6(6), pp.725-735
    Description: The mode of the antitumoral activity of multimutated oncolytic herpes simplex virus type 1 G207 has not been fully elucidated yet. Because the antitumoral activity of many drugs involves the inhibition of tumor blood vessel formation, we determined if G207 had an influence on angiogenesis. Monolayers of human umbilical vein endothelial cells and human dermal microvascular endothelial cells, but not human dermal fibroblasts, bronchial epithelial cells, and retinal glial cells, were highly sensitive to the replicative and cytotoxic effects of G207. Moreover, G207 infection caused the destruction of endothelial cell tubes . In the Matrigel plug assay in mice, G207 suppressed the formation of perfused vessels. Intratumoral treatment of established human rhabdomyosarcoma xenografts with G207 led to the destruction of tumor vessels and tumor regression. Ultrastructural investigations revealed the presence of viral particles in both tumor and endothelial cells of G207-treated xenografts, but not in adjacent normal tissues. These findings show that G207 may suppress tumor growth, in part, due to inhibition of angiogenesis.
    Keywords: Angiogenesis ; Hsv-1 ; G207 ; Human Rhabdomyosarcoma ; Ribonucleotide Reductase ; Medicine
    ISSN: 1476-5586
    E-ISSN: 1476-5586
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Medical Microbiology and Immunology, 2005, Vol.194(1), pp.55-59
    Description: Intracellular glutathione (GSH) plays an important regulatory role in the host response to viral infections. Replenishment of intracellular GSH is a desirable yet challenging goal, since systemic GSH supplementation is rather inefficient due to a short half-life of GSH in blood plasma. Further, GSH is not taken up by cells directly, but needs to be broken down into amino acids and resynthesized to GSH intracellularly, this process often being impaired during viral infections. These obstacles may be overcome by a novel glutathione derivative S-acetylglutathione (S-GSH), which is more stable in plasma and taken up directly by cells with subsequent conversion to GSH. In the present study, in vitro effects of supplementation with S-GSH or GSH on intracellular GSH levels, cell survival and replication of human herpes simplex virus type 1 (HSV-1) were studied in human foreskin fibroblasts. In addition, in vivo effects of supplementation with S-GSH or GSH on HSV-1-induced mortality were studied in hr/hr mice. In cell culture, viral infection resulted in a significant decrease of intracellular GSH levels. S-GSH efficiently and dose-dependently (5 and 10 mM tested) restored intracellular GSH, and this replenishment was more efficient than with GSH supplementation. In mice, S-GSH, but not GSH, significantly decreased HSV-1-induced mortality ( P 〈0.05). The data suggest that S-GSH is a suitable antiviral agent against HSV-1 both in vitro and in vivo, indicating that this drug may be of benefit in the adjunctive therapy of HSV-1 infections.
    Keywords: Intracellular glutathione ; S-acetylglutathione ; Herpes simplex virus type 1 infection ; Antiviral drugs
    ISSN: 0300-8584
    E-ISSN: 1432-1831
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages