Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Water Pollutants, Chemical  (110)
Type of Medium
Language
Year
  • 1
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 05 May 2015, Vol.112(18), pp.5750-5
    Description: Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (〉2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions.
    Keywords: Agriculture ; Biodiversity ; Global Surface Waters ; Insecticide Contamination ; Regulatory Risk Assessment ; Environmental Monitoring -- Methods ; Insecticides -- Analysis ; Water Pollutants, Chemical -- Analysis
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Water Research, 2011, Vol.45(13), pp.3999-4007
    Description: Ozone application is an effective tool to reduce loads of (micro)pollutants in wastewater, however, its ecotoxicological implications are largely unknown. Therefore, the feeding rates of a leaf-shredding invertebrate ( ) exposed to secondary (=non-ozone) or ozone treated wastewater were investigated to assess potential ecotoxicological effects. Two repetitive experiments resulted in significantly higher feeding rates for gammarids exposed to ozone compared to non-ozone treated wastewater sampled from a treatment plant equipped with a full-scale ozonation. A further experiment confirmed these results also for wastewater from the same treatment plant, when ozonation was conducted at the lab-scale. However, the deviations in dissolved organic carbon profiles of ozone and non-ozone wastewater did not seem to be the driving factor for the effects observed. Two additional experiments displayed on the one hand a higher feeding rate of if exposed to ten-fold enriched eluates from solid phase extraction cartridges loaded with ozone compared to non-ozone treated wastewater. On the other hand, the mean feeding rate of gammarids exposed to non-ozone treated wastewater, which contained hardly any (micro)pollutants (i.e. pharmaceuticals), was at the same level as wastewater from the same source additionally treated with ozone. These results suggest that not an alteration in the organic matrix but a reduction in the load of micropollutants most likely triggered the effects in the bioassay applied. Hence, the feeding rate of appears to be a well-suited bioassay to indicate alterations in ecotoxicological properties of wastewater due to the application of advanced oxidation processes like ozonation. ► Ozonation of municipal wastewater reduces ecotoxicity for gammarids. ► Alteration in organic matrix caused by ozonation did not affect gammarids. ► Loads of micropollutants seem to trigger the effects in the feeding assay. ► Feeding assays suggest to be suitable to evaluate advance oxidation techniques.
    Keywords: Pharmaceuticals ; Ozone ; By-Products ; Solid Phase Extraction ; Gammarus ; Feeding Assay ; Engineering
    ISSN: 0043-1354
    E-ISSN: 1879-2448
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Science of the Total Environment, 2010, Vol.408(22), pp.5405-5413
    Description: The implementation of a geodata-based probabilistic pesticide exposure assessment for surface waters in Germany offers the opportunity to base the exposure estimation on more differentiated assumptions including detailed landscape characteristics. Since these characteristics can only be estimated using field surveys, water body width and depth, hydrology, riparian buffer strip width, ground vegetation cover, existence of concentrated flow paths, and riparian vegetation were characterised at 104 water body segments in the vineyard region Palatinate (south-west Germany). Water body segments classified as permanent (n = 43) had median values of water body width and depth of 0.9 m and 0.06 m, respectively, and the determined median width:depth ratio was 15. Thus, the deterministic water body model (width = 1 m; depth = 0.3 m) assumed in regulatory exposure assessment seems unsuitable for small water bodies in the study area. Only 25% of investigated buffer strips had a dense vegetation cover (〉 70%) and allow a laminar sheet flow as required to include them as an effective pesticide runoff reduction landscape characteristic. At 77 buffer strips, bordering field paths and erosion rills leading into the water body were present, concentrating pesticide runoff and consequently decreasing buffer strip efficiency. The vegetation type shrubbery (height 〉 1.5 m) was present at 57 (29%) investigated riparian buffer strips. According to their median optical vegetation density of 75%, shrubberies may provide a spray drift reduction of 72 ± 29%. Implementing detailed knowledge in an overall assessment revealed that exposure via drift might be 2.4 and via runoff up to 1.6 fold higher than assumed by the deterministic approach. Furthermore, considering vegetated buffer strips only by their width leads to an underestimation of exposure by a factor of as much as four. Our data highlight that the deterministic model assumptions neither represent worst-case nor median values and therefore cannot simply be adopted in a probabilistic approach.
    Keywords: Probabilistic Exposure Assessment ; Pesticide ; Exposure ; Riparian Buffer Strips ; Field Survey ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Science of the Total Environment, 15 October 2018, Vol.639, pp.516-525
    Description: The decades-long agricultural use of insecticides resulted in frequent contamination of surface waters globally regularly posing high risks for the aquatic biodiversity. However, the concentration levels of individual insecticide compounds have by now not been compiled and reported using global scale data, hampering our knowledge on the insecticide exposure of aquatic ecosystems. Here, we specify measured insecticide concentrations (MICs, comprising in total 11,300 water and sediment concentrations taken from a previous publication) for 28 important insecticide compounds covering four major insecticide classes. Results show that organochlorine and organophosphate insecticides, which dominated the global insecticide market for decades, have been detected most often and at highest concentration levels in surface waters globally. In comparison, MICs of the more recent pyrethroids and neonicotinoids were less often reported and generally at lower concentrations as a result of their later market introduction and lower application rates. An online insecticide classification calculator (ICC; available at: ) is provided in order to enable the comparison and classification of prospective MICs with available global insecticide concentrations. Spatial analyses of existing data show that most MICs were reported for surface waters in North America, Asia and Europe, whereas highest concentration levels were detected in Africa, Asia and South America. An evaluation of water and sediment MICs showed that theoretical organic carbon-water partition coefficients (K ) determined in the laboratory overestimated K values based on actual field concentrations by up to a factor of more than 20, with highest deviations found for highly sorptive pyrethroids. Overall, the comprehensive compilation of insecticide field concentrations presented here is a valuable tool for the classification of future surface water monitoring results and serves as important input data for more field relevant toxicity testing approaches and pesticide exposure and risk assessment schemes.
    Keywords: Pesticides ; Surface Water Exposure ; Monitoring ; Global Survey ; Koc ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Environmental Pollution, 2012, Vol.167, pp.41-46
    Description: Neonicotinoid insecticides like thiacloprid enter agricultural surface waters, where they may affect predator prey-interactions, which are of central importance for ecosystems as well as the functions these systems provide. The effects of field relevant thiacloprid concentrations on the leaf consumption...
    Keywords: Other Biological Topics ; Annan Biologi
    ISSN: 0269-7491
    E-ISSN: 18736424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Journal of Hazardous Materials, 2011, Vol.192(2), pp.772-778
    Description: ► Meta-analysis displays reduced toxicity of wastewater due to activated carbon or ozone. ► Groups of species (invertebrates) react different than others (e.g. bacteria). ► Purification via SPE may overestimate the detoxification potential. ► bioassays showed reduced ecotoxicity due to activated carbon, ozone and TiO and UV. ► Activated carbon adsorbs nutrients, which may jeopardize any positive effect of this technique. Advanced treatment techniques, like ozone, activated carbon and TiO in combination with UV, are proposed to improve removal efficiency of micropollutants during wastewater treatment. In a meta-analysis of peer-reviewed literature, we found significantly reduced overall ecotoxicity of municipal wastewaters treated with either ozone ( = 667) or activated carbon (=113), while TiO and UV was not yet assessed. As comparative investigations regarding the detoxification potential of these advanced treatment techniques in municipal wastewater are scarce, we assessed them in four separate -feeding trials with 20 replicates per treatment. These bioassays indicate that ozone concentrations of approximately 0.8 mg ozone/mg DOC may produce toxic transformation products. However, referred effects are removed if higher ozone concentrations are used (1.3 mg ozone/mg DOC). Moreover, the application of 1 g TiO /l and ambient UV consistently reduced ecotoxicity. Although activated carbon may remove besides micropollutants also nutrients, which seemed to mask its detoxification potential, this treatment technique reduced the ecotoxicity of the wastewater following its amendment with nutrients. Hence, all three advanced treatment techniques are suitable to reduce the ecotoxicity of municipal wastewater mediated by micropollutants and may hence help to meet the requirements of the European Water Framework Directive.
    Keywords: Meta-Analysis ; Feeding Rate ; Wastewater ; Advanced Oxidation ; Activated Carbon ; Engineering ; Law
    ISSN: 0304-3894
    E-ISSN: 1873-3336
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: 2012, Vol.7(11), p.e48956
    Description: The nanoparticle industry is expected to become a trillion dollar business in the near future. Therefore, the unintentional introduction of nanoparticles into the environment is increasingly likely. However, currently applied risk-assessment practices require further adaptation to accommodate the intrinsic nature of engineered nanoparticles. Combining a chronic flow-through exposure system with subsequent acute toxicity tests for the standard test organism Daphnia magna , we found that juvenile offspring of adults that were previously exposed to titanium dioxide nanoparticles exhibit a significantly increased sensitivity to titanium dioxide nanoparticles compared with the offspring of unexposed adults, as displayed by lower 96 h-EC 50 values. This observation is particularly remarkable because adults exhibited no differences among treatments in terms of typically assessed endpoints, such as sensitivity, number of offspring, or energy reserves. Hence, the present study suggests that ecotoxicological research requires further development to include the assessment of the environmental risks of nanoparticles for the next and hence not directly exposed generation, which is currently not included in standard test protocols.
    Keywords: Research Article ; Agriculture ; Biology ; Materials Science ; Biotechnology ; Neuroscience
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: PLoS ONE, 2013, Vol.8(11)
    Description: Due to their surface characteristics, nanosized titanium dioxide particles (nTiO 2 ) tend to adhere to biological surfaces and we thus hypothesize that they may alter the swimming performance and behavior of motile aquatic organisms. However, no suitable approaches to address these impairments in swimming behavior as a result of nanoparticle exposure are available. Water fleas Daphnia magna exposed to 5 and 20 mg/L nTiO 2 (61 nm; polydispersity index: 0.157 in 17.46 mg/L stock suspension) for 96 h showed a significantly ( p 〈0.05) reduced growth rate compared to a 1-mg/L treatment and the control. Using three-dimensional video observations of swimming trajectories, we observed a treatment-dependent swarming of D. magna in the center of the test vessels during the initial phase of the exposure period. Ensemble mean swimming velocities increased with increasing body length of D. magna , but were significantly reduced in comparison to the control in all treatments after 96 h of exposure. Spectral analysis of swimming velocities revealed that high-frequency variance, which we consider as a measure of swimming activity, was significantly reduced in the 5- and 20-mg/L treatments. The results highlight the potential of detailed swimming analysis of D. magna for the evaluation of sub-lethal mechanical stress mechanisms resulting from biological surface coating and thus for evaluating the effects of nanoparticles in the aquatic environment.
    Keywords: Research Article
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Science of the Total Environment, 01 March 2016, Vol.545-546, pp.171-183
    Description: Regulatory risk assessment considers vegetated buffer strips as effective risk mitigation measures for the reduction of runoff-related pesticide exposure of surface waters. However, apart from buffer strip widths, further characteristics such as vegetation density or the presence of erosion rills are generally neglected in the determination of buffer strip mitigation efficacies. This study conducted a field survey of fruit orchards (average slope 3.1–12.2%) of the Lourens River catchment, South Africa, which specifically focused on the characteristics and attributes of buffer strips separating orchard areas from tributary streams. In addition, in-stream and erosion rill water samples were collected during three runoff events and GIS-based modeling was employed to predict losses of pesticides associated with runoff. The results show that erosion rills are common in buffer strips (on average 13 to 24 m wide) of the tributaries (up to 6.5 erosion rills per km flow length) and that erosion rills represent concentrated entry pathways of pesticide runoff into the tributaries during rainfall events. Exposure modeling shows that measured pesticide surface water concentrations correlated significantly (R = 0.626; p 〈 0.001) with runoff losses predicted by the modeling approach in which buffer strip width was set to zero at sites with erosion rills; in contrast, no relationship between predicted runoff losses and in-stream pesticide concentrations were detected in the modeling approach that neglected erosion rills and thus assumed efficient buffer strips. Overall, the results of our study show that erosion rills may substantially reduce buffer strip pesticide retention efficacies during runoff events and suggest that the capability of buffer strips as a risk mitigation tool for runoff is largely overestimated in current regulatory risk assessment procedures conducted for pesticide authorization.
    Keywords: Risk Assessment ; Runoff ; Monitoring ; Exposure Modeling ; Field Survey ; South Africa ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Science of the Total Environment, 01 April 2018, Vol.619-620, pp.391-400
    Description: The effects of sediment contamination on fish are of high significance for the protection of ecosystems, human health and economy. However, standardized sediment bioassays with benthic fish species, that mimic bioavailability of potentially toxic compounds and comply with the requirements of alternative test methods, are still scarce. In order to address this issue, embryos of the benthic European weatherfish ( ) were exposed to freeze-dried sediment (via sediment contact assays (SCA)) and sediment extracts (via acute fish embryo toxicity tests) varying in contamination level. The extracts were gained by accelerated solvent extraction with (i) acetone and (ii) pressurized hot water (PHWE) and subsequently analyzed for polycyclic aromatic hydrocarbons, polychlorinated biphenyls and polychlorinated dibenzodioxins and dibenzofurans. Furthermore, embryos of the predominately used zebrafish ( ) were exposed to extracts from the two most contaminated sediments. Results indicated sufficient robustness of weatherfish embryos towards varying test conditions and sensitivity towards relevant sediment-bound compounds. Furthermore, a compliance of effect concentrations derived from weatherfish embryos exposed to sediment extracts (96 h-LC ) with both measured gradient of sediment contamination and previously published results was observed. In comparison to zebrafish, weatherfish embryos showed higher sensitivity to the bioavailability-mimicking extracts from PHWE but lower sensitivity to extracts gained with acetone. SCAs conducted with weatherfish embryos revealed practical difficulties that prevented an implementation with three of four sediments tested. In summary, an application of weatherfish embryos, using bioassays with sediment extracts from PHWE might increase the ecological relevance of sediment toxicity testing: it allows investigations using benthic and temperate fish species considering both bioavailable contaminants and animal welfare concerns.
    Keywords: Acute Fish Embryo Toxicity Test ; Pressurized Hot Water Extraction ; Sediment Contact Assay ; Environmental Risk Assessment ; Alternative Test Method ; Early Life Stage ; Zebrafish ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages