Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Stroke, Ovid Technologies (Wolters Kluwer Health), Vol. 53, No. 3 ( 2022-03), p. 769-778
    Abstract: The purpose of the COMPLETE (International Acute Ischemic Stroke Registry With the Penumbra System Aspiration Including the 3D Revascularization Device) registry was to evaluate the generalizability of the safety and efficacy of the Penumbra System (Penumbra, Inc, Alameda) in a real-world setting. Methods: COMPLETE was a global, prospective, postmarket, multicenter registry. Patients with large vessel occlusion–acute ischemic stroke who underwent mechanical thrombectomy using the Penumbra System with or without the 3D Revascularization Device as frontline approach were enrolled at 42 centers (29 United States, 13 Europe) from July 2018 to October 2019. Primary efficacy end points were successful postprocedure angiographic revascularization (modified Thrombolysis in Cerebral Infarction ≥2b) and 90-day functional outcome (modified Rankin Scale score 0–2). The primary safety end point was 90-day all-cause mortality. An imaging core lab determined modified Thrombolysis in Cerebral Infarction scores, Alberta Stroke Program Early CT Scores, clot location, and occurrence of intracranial hemorrhage at 24 hours. Independent medical reviewers adjudicated safety end points. Results: Six hundred fifty patients were enrolled (median age 70 years, 54.0% female, 49.2% given intravenous recombinant tissue-type plasminogen activator before thrombectomy). Rate of modified Thrombolysis in Cerebral Infarction 2b to 3 postprocedure was 87.8% (95% CI, 85.3%–90.4%). First pass and postprocedure rates of modified Thrombolysis in Cerebral Infarction 2c to 3 were 41.5% and 66.2%, respectively. At 90 days, 55.8% (95% CI, 51.9%–59.7%) had modified Rankin Scale score 0 to 2, and all-cause mortality was 15.5% (95% CI, 12.8%–18.3%). Conclusions: Using Penumbra System for frontline mechanical thrombectomy treatment of patients with large vessel occlusion–acute ischemic stroke in a real-world setting was associated with angiographic, clinical, and safety outcomes that were comparable to prior randomized clinical trials with stringent site and operator selection criteria. Registration: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT03464565.
    Type of Medium: Online Resource
    ISSN: 0039-2499 , 1524-4628
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2022
    detail.hit.zdb_id: 1467823-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Biomechanical Engineering, ASME International, Vol. 137, No. 12 ( 2015-12-01)
    Abstract: With the increased availability of computational resources, the past decade has seen a rise in the use of computational fluid dynamics (CFD) for medical applications. There has been an increase in the application of CFD to attempt to predict the rupture of intracranial aneurysms, however, while many hemodynamic parameters can be obtained from these computations, to date, no consistent methodology for the prediction of the rupture has been identified. One particular challenge to CFD is that many factors contribute to its accuracy; the mesh resolution and spatial/temporal discretization can alone contribute to a variation in accuracy. This failure to identify the importance of these factors and identify a methodology for the prediction of ruptures has limited the acceptance of CFD among physicians for rupture prediction. The International CFD Rupture Challenge 2013 seeks to comment on the sensitivity of these various CFD assumptions to predict the rupture by undertaking a comparison of the rupture and blood-flow predictions from a wide range of independent participants utilizing a range of CFD approaches. Twenty-six groups from 15 countries took part in the challenge. Participants were provided with surface models of two intracranial aneurysms and asked to carry out the corresponding hemodynamics simulations, free to choose their own mesh, solver, and temporal discretization. They were requested to submit velocity and pressure predictions along the centerline and on specified planes. The first phase of the challenge, described in a separate paper, was aimed at predicting which of the two aneurysms had previously ruptured and where the rupture site was located. The second phase, described in this paper, aims to assess the variability of the solutions and the sensitivity to the modeling assumptions. Participants were free to choose boundary conditions in the first phase, whereas they were prescribed in the second phase but all other CFD modeling parameters were not prescribed. In order to compare the computational results of one representative group with experimental results, steady-flow measurements using particle image velocimetry (PIV) were carried out in a silicone model of one of the provided aneurysms. Approximately 80% of the participating groups generated similar results. Both velocity and pressure computations were in good agreement with each other for cycle-averaged and peak-systolic predictions. Most apparent “outliers” (results that stand out of the collective) were observed to have underestimated velocity levels compared to the majority of solutions, but nevertheless identified comparable flow structures. In only two cases, the results deviate by over 35% from the mean solution of all the participants. Results of steady CFD simulations of the representative group and PIV experiments were in good agreement. The study demonstrated that while a range of numerical schemes, mesh resolution, and solvers was used, similar flow predictions were observed in the majority of cases. To further validate the computational results, it is suggested that time-dependent measurements should be conducted in the future. However, it is recognized that this study does not include the biological aspects of the aneurysm, which needs to be considered to be able to more precisely identify the specific rupture risk of an intracranial aneurysm.
    Type of Medium: Online Resource
    ISSN: 0148-0731 , 1528-8951
    Language: English
    Publisher: ASME International
    Publication Date: 2015
    SSG: 31
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages