Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Years
  • 1
    In: JAMA Network Open, American Medical Association (AMA), Vol. 6, No. 2 ( 2023-02-10), p. e2255709-
    Abstract: Parenteral enoxaparin is a preferred anticoagulant used in the acute phase for patients with acute coronary syndrome (ACS). The safety and efficacy of short-term low-dose rivaroxaban in this clinical setting remain unknown. Objective To compare the safety and efficacy of rivaroxaban vs enoxaparin in the acute phase of ACS. Design, Setting, and Participants This multicenter, prospective, open-label, active-controlled, equivalence and noninferiority trial was conducted from January 2017 through May 2021 with a 6-month follow-up at 21 hospitals in China. Participants included patients with ACS missing the primary reperfusion window or before selective revascularization. Data were analyzed from November 2021 to November 2022. Interventions Participants were randomized 1:1:1 to oral rivaroxaban 2.5 mg or 5 mg or 1 mg/kg subcutaneous enoxaparin twice daily in addition to dual antiplatelet therapy (DAPT; aspirin 100 mg and clopidogrel 75 mg once daily) for a mean of 3.7 days. Main Outcomes and Measures The primary safety end point was bleeding events, as defined by the International Society on Thrombosis and Haemostasis, and the primary efficacy end point was major adverse cardiovascular events (MACEs), including cardiac death, myocardial infarction, rerevascularization, or stroke during the 6-month follow-up. Results Of 2055 enrolled patients, 2046 (99.6%) completed the trial (mean [SD] age 65.8 [8.2] years, 1443 [70.5%] male) and were randomized to enoxaparin (680 patients), rivaroxaban 2.5 mg (683 patients), or rivaroxaban 5 mg (683 patients). Bleeding rates were 46 patients (6.8%) in the enoxaparin group, 32 patients (4.7%) in the rivaroxaban 2.5 mg group, and 36 patients (5.3%)in the rivaroxaban 5 mg group (rivaroxaban 2.5 mg vs enoxaparin: noninferiority hazard ratio [HR] , 0.68; 95% CI, 0.43 to 1.07; P  = .005; rivaroxaban 5 mg vs enoxaparin: noninferiority HR, 0.88; 95% CI, 0.70 to 1.09; P  = .001). The incidence of MACEs was similar among groups, and noninferiority was reached in the rivaroxaban 5 mg group (HR, 0.60; 95% CI, 0.31 to 1.16, P  = .02) but not in the rivaroxaban 2.5 mg group (HR, 0.68; 95% CI, 0.36 to 1.30; P  = .05) compared with the enoxaparin group. Conclusions and Relevance In this equivalence and noninferiority trial, oral rivaroxaban 5 mg showed noninferiority to subcutaneous enoxaparin (1 mg/kg) for patients with ACS treated with DAPT during the acute phase. Results of this feasibility study provide useful information for designing future randomized clinical trials with sufficient sample sizes. Trial Registration ClinicalTrials.gov Identifier: NCT03363035
    Type of Medium: Online Resource
    ISSN: 2574-3805
    Language: English
    Publisher: American Medical Association (AMA)
    Publication Date: 2023
    detail.hit.zdb_id: 2931249-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Vol. 325, No. 5 ( 2023-11-01), p. H965-H982
    Abstract: With sparse treatment options, cardiac disease remains a significant cause of death among humans. As a person ages, mitochondria breakdown and the heart becomes less efficient. Heart failure is linked to many mitochondria-associated processes, including endoplasmic reticulum stress, mitochondrial bioenergetics, insulin signaling, autophagy, and oxidative stress. The roles of key mitochondrial complexes that dictate the ultrastructure, such as the mitochondrial contact site and cristae organizing system (MICOS), in aging cardiac muscle are poorly understood. To better understand the cause of age-related alteration in mitochondrial structure in cardiac muscle, we used transmission electron microscopy (TEM) and serial block facing-scanning electron microscopy (SBF-SEM) to quantitatively analyze the three-dimensional (3-D) networks in cardiac muscle samples of male mice at aging intervals of 3 mo, 1 yr, and 2 yr. Here, we present the loss of cristae morphology, the inner folds of the mitochondria, across age. In conjunction with this, the three-dimensional (3-D) volume of mitochondria decreased. These findings mimicked observed phenotypes in murine cardiac fibroblasts with CRISPR/Cas9 knockout of Mitofilin, Chchd3, Chchd6 (some members of the MICOS complex), and Opa1, which showed poorer oxidative consumption rate and mitochondria with decreased mitochondrial length and volume. In combination, these data show the need to explore if loss of the MICOS complex in the heart may be involved in age-associated mitochondrial and cristae structural changes. NEW & NOTEWORTHY This article shows how mitochondria in murine cardiac changes, importantly elucidating age-related changes. It also is the first to show that the MICOS complex may play a role in outer membrane mitochondrial structure.
    Type of Medium: Online Resource
    ISSN: 0363-6135 , 1522-1539
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2023
    detail.hit.zdb_id: 1477308-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Advanced Biology, Wiley
    Abstract: Mitochondria respond to metabolic demands of the cell and to incremental damage, in part, through dynamic structural changes that include fission (fragmentation), fusion (merging of distinct mitochondria), autophagic degradation (mitophagy), and biogenic interactions with the endoplasmic reticulum (ER). High resolution study of mitochondrial structural and functional relationships requires rapid preservation of specimens to reduce technical artifacts coupled with quantitative assessment of mitochondrial architecture. A practical approach for assessing mitochondrial fine structure using two dimensional and three dimensional high‐resolution electron microscopy is presented, and a systematic approach to measure mitochondrial architecture, including volume, length, hyperbranching, cristae morphology, and the number and extent of interaction with the ER is described. These methods are used to assess mitochondrial architecture in cells and tissue with high energy demand, including skeletal muscle cells, mouse brain tissue, and Drosophila muscles. The accuracy of assessment is validated in cells and tissue with deletion of genes involved in mitochondrial dynamics.
    Type of Medium: Online Resource
    ISSN: 2701-0198 , 2701-0198
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 3027224-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Cell, Elsevier BV, Vol. 186, No. 15 ( 2023-07), p. 3138-3142
    Type of Medium: Online Resource
    ISSN: 0092-8674
    RVK:
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 187009-9
    detail.hit.zdb_id: 2001951-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Virology, American Society for Microbiology, Vol. 94, No. 11 ( 2020-05-18)
    Abstract: Different from other subgroups of avian leukosis viruses (ALVs), ALV-J is highly pathogenic. It is the main culprit causing myeloid leukemia and hemangioma in chickens. The distinctiveness of the env gene of ALV-J, with low homology to those of other ALVs, is linked to its unique pathogenesis, but the underlying mechanism remains unclear. Previous studies show that env of ALV-J can be grouped into three species based on the tyrosine motifs in the cytoplasmic domain (CTD) of Gp37, i.e., the inhibitory, bifunctional, and active groups. To explore whether the C terminus or the tyrosine motifs in the CTD of Gp37 affect the pathogenicity of ALV-J, a set of ALV-J infectious clones containing different C termini of Gp37 or the mutants at the tyrosine sites were tested in vitro and in vivo . Viral growth kinetics indicated not only that ALV-J with active env is the fastest in replication and ALV-J with inhibitory env is the lowest but also that the tyrosine sites essentially affected the replication of ALV-J. Moreover, in vivo studies demonstrated that chickens infected by ALV-J with active or bifunctional env showed higher viremia, cloacal viral shedding, and viral tissue load than those infected by ALV-J with inhibitory env . Notably, the chickens infected by ALV-J with active or bifunctional env showed significant loss of body weight compared with the control chickens. Taken together, these findings reveal that the C terminus of Gp37 plays a vital role in ALV-J pathogenesis, and change from inhibitory env to bifunctional or active env increases the pathogenesis of ALV-J. IMPORTANCE ALV-J can cause severe immunosuppression and myeloid leukemia in infected chickens. However, no vaccine or antiviral drug is available against ALV-J, and the mechanism for ALV-J pathogenesis needs to be elucidated. It is generally believed that gp85 and LTR of ALV contribute to its pathogenesis. Here, we found that the C terminus and the tyrosine motifs (YxxM, ITIM, and ITAM-like) in the CTD of Gp37 of ALV-J could affect the pathogenicity of ALV-J in vitro and in vivo . The pathogenicity of ALV-J with Gp37 containing ITIM only was significantly less than ALV-J with Gp37 containing both YxxM and ITIM and ALV-J with Gp37 containing both YxxM and ITAM-like. This study highlights the vital role of the C terminus of Gp37 in the pathogenesis of ALV-J and thus provides a new perspective to elucidate the interaction between ALV-J and its host and a molecular basis to develop efficient strategies against ALV-J.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2020
    detail.hit.zdb_id: 1495529-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Virology, American Society for Microbiology, Vol. 97, No. 2 ( 2023-02-28)
    Abstract: Despite active control strategies, including the vaccination program in poultry, H9N2 avian influenza viruses possessing mutations in hemagglutinin (HA) were frequently isolated. In this study, we analyzed the substitutions at HA residue 193 (H3 numbering) of H9N2 and investigated the impact of these mutations on viral properties. Our study indicated that H9N2 circulating in the Chinese poultry have experienced frequent mutations at HA residue 193 since 2013, with viruses that carried asparagine (N) being replaced by those with alanine (A), aspartic acid (D), glutamic acid (E), glycine (G), and serine (S), etc. Our results showed the N193G mutation impeded the multiple cycles of growth of H9N2, and although most of the variant HAs retained the preference for human-like receptors as did the wild-type N193 HA, the N193E mutation altered the preference for both human and avian-like receptors. Furthermore, these mutations substantially altered the antigenicity of H9N2 as measured by both monoclonal antibodies and antisera. In vivo studies further demonstrated that these mutations showed profound impact on viral replication and transmission of H9N2 in chicken. Viruses with D, E, or S at residue 193 acquired the ability to replicate in lungs of the infected chickens, whereas virus with G193 reduced its transmissibility in infected chickens to those in direct contact. Our findings demonstrated that variations at HA residue 193 altered various properties of H9N2, highlighting the significance of the continued surveillance of HA for better understanding of the etiology and effective control of H9N2 in poultry. IMPORTANCE H9N2 are widespread and have sporadically caused clinical diseases in humans. Extensive vaccinations in poultry helped constrain H9N2; however, they might have facilitated the evolution of the virus. It is therefore of importance to monitor the variation of the circulating H9N2 and evaluate its risk to both veterinary and public health. Here, we found substitutions at position 193 of HA from H9N2 circulated since 2013 and assessed the impact of several mutations on viral properties. Our data showed these mutations resulted in substantial antigenic change. N193E altered the binding preference of HA for human-like to both avian and human-like receptors. More importantly, N193G impaired the growth of H9N2 and its transmission in chickens, whereas mutations from N to D, E, and S enhanced the viral replication in lungs of chickens. Our study enriched the knowledge about H9N2 and may help implement an effective control strategy for H9N2.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 1495529-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Virology, American Society for Microbiology, Vol. 94, No. 17 ( 2020-08-17)
    Abstract: Recently, the disease of hepatitis-hydropericardium syndrome (HPS) caused by serotype 4 fowl adenovirus (FAdV-4) has spread widely and resulted in huge economic losses to the poultry industry. Although the genome of FAdV-4 has two fiber genes (fiber-1 and fiber-2), the exact role of the genes in the infection of FAdV-4 is barely known. In this study, through superinfection resistance analysis and an interfering assay, we found that fiber-1, but not fiber-2, was the key factor for directly triggering the infection of FAdV-4. The truncation analysis further revealed that both of the shaft and knob domains of fiber-1 were required for the infection. Moreover, the sera against the knob domain were able to block FAdV-4 infection, and the knob-containing fusion protein provided efficient protection against the lethal challenge of FAdV-4 in chickens. All the data demonstrated the significant roles of fiber-1 and its knob domain in directly mediating the infection of FAdV-4, which established a foundation for identifying the receptor of FAdV-4 and developing efficient vaccines against FAdV-4. IMPORTANCE Among 12 serotypes of fowl adenovirus (FAdV), FAdV-1, FAdV-4, and FAdV-10 all carry two fiber genes (i.e., fiber-1 and fiber-2), whereas other serotypes have only one. As important viral surface proteins, the fibers play vital roles in the infection and pathogenesis of FAdV. However, the importance of the fibers to the infection and pathogenesis of FAdV may be different from each other. Recent studies reveal that fiber-2 is identified as a determinant of virulence, but which fiber triggers the infection of FAdV-4 remains unknown. In this study, fiber-1 was identified as a key factor for directly mediating the infection of FAdV-4 through its shaft and knob domains, whereas fiber-2 did not play a role in triggering FAdV-4 infection. The results suggest that fiber-1 and its knob domain may serve as a target for identifying the receptor of FAdV-4 and developing efficient drugs or vaccines against FAdV-4.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2020
    detail.hit.zdb_id: 1495529-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Virology, American Society for Microbiology, Vol. 84, No. 7 ( 2010-04), p. 3542-3551
    Abstract: The severe acute respiratory syndrome coronavirus (SARS-CoV) accessory protein 6 (p6) is a 63-amino-acid multifunctional Golgi-endoplasmic reticulum (ER) membrane-associated protein, with roles in enhancing virus replication and in evading the innate immune response to infection by inhibiting STAT1 (signal transducer and activator of transcription factor 1) translocation to the nucleus. Here, we demonstrate that p6 has an N-terminal region-cytoplasm-C-terminal region-cytoplasm configuration with residues 2 to 37 likely membrane embedded. Expression of p6, or of its N-terminal 41-amino-acid region, in the absence of other viral proteins, induced the formation of membranous structures, some of which were similar to double membrane vesicles involved in virus replication. Consistent with a role in virus replication, p6 partially colocalized with nonstructural protein 3 (nsp3), a marker for virus replication complexes. Further, while the C-terminal region is required for preventing STAT1 translocation to the nucleus, our results also indicated that the N-terminal 18 amino acids were necessary for maximal inhibition. Collectively, these results support the notion that p6 is a two-domain protein, although the function of each is not completely independent of the other.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2010
    detail.hit.zdb_id: 1495529-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Society for Microbiology ; 2011
    In:  Journal of Virology Vol. 85, No. 19 ( 2011-10), p. 9667-9679
    In: Journal of Virology, American Society for Microbiology, Vol. 85, No. 19 ( 2011-10), p. 9667-9679
    Abstract: Herpes simplex virus 1 (HSV-1) capsids leave the nucleus by a process of envelopment and de-envelopment at the nuclear envelope (NE) that is accompanied by structural alterations of the NE. As capsids translocate across the NE, transient primary enveloped virions form in the perinuclear space. Here, we provide evidence that torsinA (TA), a ubiquitously expressed ATPase, has a role in HSV-1 nuclear egress. TA resides within the lumen of the endoplasmic reticulum (ER)/NE and functions in maintaining normal NE architecture. We show that perturbation of TA normal function by overexpressing torsinA wild type (TAwt) inhibits HSV-1 production. Ultrastructural analysis of infected cells overexpressing TAwt revealed reduced levels of surface virions in addition to accumulation of novel, double-membrane structures called virus-like vesicles (VLVs). Although mainly found in the cytoplasm, VLVs resemble primary virions in their size, by the appearance of the inner membrane, and by the presence of pUL34, a structural component of primary virions. Collectively, our data suggest a model in which interference of TA normal function by overexpression impairs de-envelopment of the primary virions leading to their accumulation in a cytoplasmic membrane compartment. This implies novel functions for TA at the NE.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2011
    detail.hit.zdb_id: 1495529-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Society for Microbiology ; 2004
    In:  Infection and Immunity Vol. 72, No. 11 ( 2004-11), p. 6262-6270
    In: Infection and Immunity, American Society for Microbiology, Vol. 72, No. 11 ( 2004-11), p. 6262-6270
    Abstract: Type IV pili, filamentous surface appendages primarily composed of a single protein subunit termed pilin, play a crucial role in the initiation of disease by a wide range of pathogenic bacteria. Although previous electron microscopic studies suggested that pili might be present on the surface of Moraxella catarrhalis isolates, detailed molecular and phenotypic analyses of these structures have not been reported to date. We identified and cloned the M. catarrhalis genes encoding PilA, the major pilin subunit, PilQ, the outer membrane secretin through which the pilus filament is extruded, and PilT, the NTPase that mediates pilin disassembly and retraction. To initiate investigation of the role of this surface organelle in pathogenesis, isogenic pilA , pilT , and pilQ mutants were constructed in M. catarrhalis strain 7169. Comparative analyses of the wild-type 7169 strain and three isogenic pil mutants demonstrated that M. catarrhalis expresses type IV pili that are essential for natural genetic transformation. Our studies suggest type IV pilus production by M. catarrhalis is constitutive and ubiquitous, although pilin expression was demonstrated to be iron responsive and Fur regulated. These data indicate that additional studies aimed at elucidating the prevalence and role of type IV pili in the pathogenesis and host response to M. catarrhalis infections are warranted.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2004
    detail.hit.zdb_id: 1483247-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages