Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 183, No. 10 ( 2009-11-15), p. 6198-6206
    Abstract: The systemic inflammatory response syndrome and subsequent organ failure are mainly driven by activated neutrophils with prolonged life span, which is believed to be due to apoptosis resistance. However, detailed underlying mechanisms leading to neutrophil apoptosis resistance are largely unknown, and possible therapeutic options to overcome this resistance do not exist. Here we report that activated neutrophils from severely injured patients exhibit cell death resistance due to impaired activation of the intrinsic apoptosis pathway, as evidenced by limited staurosporine-induced mitochondrial membrane depolarization and decreased caspase-9 activity. Moreover, we found that these neutrophils express high levels of antiapoptotic Mcl-1 and low levels of proapoptotic Bax protein. Mcl-1 up-regulation was dependent on elevated concentrations of GM-CSF in patient serum. Accordingly, increased Mcl-1 protein stability and GM-CSF serum concentrations were shown to correlate with staurosporine-induced apoptosis resistance. However, cross-linking of neutrophil Fas by immobilized agonistic anti-Fas IgM resulted in caspase-dependent mitochondrial membrane depolarization and apoptosis induction. In conclusion, the observed impairment of the intrinsic pathway and the resulting apoptosis resistance may be overcome by immobilized agonistic anti-Fas IgM. Targeting of neutrophil Fas by immobilized agonistic effector molecules may represent a new therapeutic tool to limit neutrophil hyperactivation and its sequelae in patients with severe immune disorders.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2009
    detail.hit.zdb_id: 1475085-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 105, No. 10 ( 2009-11-06), p. 1031-1040
    Abstract: Rationale: Human skin contains photolabile nitric oxide derivates like nitrite and S -nitroso thiols, which after UVA irradiation, decompose and lead to the formation of vasoactive NO. Objective: Here, we investigated whether whole body UVA irradiation influences the blood pressure of healthy volunteers because of cutaneous nonenzymatic NO formation. Methods and Results: As detected by chemoluminescence detection or by electron paramagnetic resonance spectroscopy in vitro with human skin specimens, UVA illumination (25 J/cm 2 ) significantly increased the intradermal levels of free NO. In addition, UVA enhanced dermal S -nitrosothiols 2.3-fold, and the subfraction of dermal S -nitrosoalbumin 2.9-fold. In vivo, in healthy volunteers creamed with a skin cream containing isotopically labeled 15 N-nitrite, whole body UVA irradiation (20 J/cm 2 ) induced significant levels of 15 N-labeled S -nitrosothiols in the blood plasma of light exposed subjects, as detected by cavity leak out spectroscopy. Furthermore, whole body UVA irradiation caused a rapid, significant decrease, lasting up to 60 minutes, in systolic and diastolic blood pressure of healthy volunteers by 11±2% at 30 minutes after UVA exposure. The decrease in blood pressure strongly correlated ( R 2 =0.74) with enhanced plasma concentration of nitrosated species, as detected by a chemiluminescence assay, with increased forearm blood flow (+26±7%), with increased flow mediated vasodilation of the brachial artery (+68±22%), and with decreased forearm vascular resistance (−28±7%). Conclusions: UVA irradiation of human skin caused a significant drop in blood pressure even at moderate UVA doses. The effects were attributed to UVA induced release of NO from cutaneous photolabile NO derivates.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2009
    detail.hit.zdb_id: 1467838-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages