Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 21, No. Supplement_2 ( 2019-04-23), p. ii81-ii82
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2094060-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 19_Supplement ( 2018-10-01), p. IA11-IA11
    Abstract: The treatment of relapses from high-risk entities remains a major clinical challenge, thus the desperate need for precision medicine approaches. To serve this need, we have developed the INFORM registry study (INdividualized therapy FOr Relapsed Malignancies in Childhood), which attempts to rapidly generate personalized tumor profiles and identify therapeutic targets in a clinical diagnostic environment for relapse patients. The INFORM study assesses the feasibility of integrating rapid molecular profiling in the clinical management of pediatric cancer patients with progressive or relapsed high-risk malignancies. Whole-exome and low-coverage whole-genome sequencing are being performed on tumor and normal DNA, complemented with matched tumor RNA sequencing (Illumina HiSeq4000), DNA methylation profiling, and gene expression profiling (for outlier gene expression). To date, more than 400 patients were enrolled from & gt;50 centers in seven different countries (Germany, The Netherlands, Switzerland, Austria, Sweden, Finland, and Australia). The average turnaround time from tissue arrival to molecular results is 3 weeks. Actionable targets with at least “borderline” evidence (according to a prioritization score harmonized with the other major pediatric precision oncology programs across Europe) are being identified in ~50% of patients. Based on these findings, several patients were recruited onto ongoing clinical trials, or targeted therapeutics and/or patient-specific peptide vaccines were incorporated into individualized treatment regimes, with first reports of marked responses. Furthermore, we have established a systematic workflow for the reporting of hereditary predisposition, which is detected in ~7% of cases. In 2018, we will start recruiting patients onto several target-defined (entity independent) subtrials of the INFORM2 interventional trial series as well as the complementary counterpart conducted in France, the eSMART trial, which will collectively provide a portfolio of ~10 mechanism-of-action defined, investigator-initiated early phase clinical (combination) trials for pediatric patients at relapse within the European Innovative Therapies for Children with Cancer (ITCC) Consortium. Citation Format: David T. W. Jones, Barbara C.Worst, Elke Pfaff, Cornelis M. Van Tilburg, Gnana Prakash Balasubramanian, Petra Fiesel, Kristian W. Pajtler, Angelika Freitag, Ruth Witt, Andreas E. Kulozik, Felix Sahm, Andreas von Deimling, Angelika Eggert, Uta Dirksen, Peter Lichter, David Capper, Olaf Witt, Stefan M. Pfister. Pediatric precision oncology programs in Germany and Europe [abstract]. In: Proceedings of the AACR Special Conference: Pediatric Cancer Research: From Basic Science to the Clinic; 2017 Dec 3-6; Atlanta, Georgia. Philadelphia (PA): AACR; Cancer Res 2018;78(19 Suppl):Abstract nr IA11.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 22, No. 1_Supplement ( 2016-01-01), p. 11-11
    Abstract: Introduction: Although molecular profiling is increasingly being applied to improve subgroup classification and to provide novel prognostic and predictive biomarkers, clinical neuropathology practice is largely based on morphology and immunohistochemistry. Current molecular methods play only a small role in determining the diagnosis itself. Methods: For molecular subclassification of tumors at NYU neuropathology and to improve diagnostic accuracy, we introduced genome-wide methylation profiling through Illumina Infinium HumanMethylation 450k array that can detect methylation marks from the DNA extracted from formalin-fixed paraffin embedded tissues. To this effort, an in-house pipeline was established in-house pipeline, which includes morphologic review, sample preparation, molecular profiling and bioinformatics analysis. We compared the methylation profiles to a reference cohort of 2150 cases from 77 tumor entities previously profiled and analyzed at German Cancer Research Center using a random forest algorithm and customized bioinformatics packages, which were shared between our institutions. Selected copy number variants (CNV) and mutations were confirmed by Fluorescence in situ Hybridization (FISH) or sequencing, and mutation specific immunohistochemistry, respectively. Results: We profiled 60 difficult in-house or consult adult and pediatric brain tumors where diagnosis, grade and/or molecular subtype were not conclusive by morphology, immunohistochemistry or standard molecular studies alone. There was 100% concordance with concurrently performed molecular tests such as 1p/19q, EGFR/BRAF CNV, MGMT promoter methylation or IDH1 status testing when these tests were performed for clinical care. Methylation profiling provided additional, relevant information in 30 of 60 (50%) cases, leading to a change of diagnosis in 9 (15%), clarification of the diagnosis in 7 (12%) cases, and further molecular subgroup refinement in 14 (23%) of cases, helping to direct further molecular testing and clinical management. Conclusion: The 450k methylation array platform represents a cost-efficient method to obtain molecular profiles of brain tumors to identify biologically relevant diagnostic subgroups, thereby improving diagnostic accuracy, and helping inform appropriate clinical management decisions. Citation Format: Kasthuri S. Kannan, Aristotelis Tsirigos, Jonathan Serrano, Lynn Ann Forrester, Arline Faustin, Cheddhi Thomas, David Capper, Volker Hovestadt, Stefan M. Pfister, David T. W Jones, Martin Sill, Daniel Schrimpf, Andreas von Deimling, Adriana Heguy, Sharon L. Gardner, Jeffrey Allen, Cyrus Hedvat, David Zagzag, Matija Snuderl, Matthias A. Karajannis. Advancing methylation profiling in neuropathology: Diagnosis and clinical management. [abstract]. In: Proceedings of the A ACR Precision Medicine Series: Integrating Clinical Genomics and Cancer Therapy; Jun 13-16, 2015; Salt Lake City, UT. Philadelphia (PA): AACR; Clin Cancer Res 2016;22(1_Suppl):Abstract nr 11.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 19_Supplement ( 2014-10-01), p. 1889-1889
    Abstract: Background The current World Health Organisation (WHO) classification of central nervous system tumors comprises over 100 entities. Most of these are defined by purely histological criteria, with varying and often overlapping spectra. Histological diagnosis is often challenging, however, especially in cases with limited or non-representative biopsy material. Thus, molecular technologies that can complement standard pathology testing have the potential to greatly enhance diagnostic precision and improve clinical decision-making. DNA methylation profiling, acting as a ‘fingerprint’ of cellular origins and molecular alterations, is one such promising technology. Methods We have assembled a reference dataset of more than 2,000 methylation profiles using the Illumina HumanMethylation450 (450k) array, currently representing over 50 brain tumor entities or subgroups. The array platform is suitable for both frozen and paraffin-embedded material, with minimal DNA input required. This reference set is iteratively updated, and a ‘random forest’ algorithm used to produce a classification scheme. Each new diagnostic case receives an entity prediction with an associated probability score. Genome-wide copy number profiles and target gene methylation data (e.g. MGMT) generated from the array provide important additional information. Results In addition to the reference cohort, more than 300 diagnostic samples from Heidelberg University Hospital and external institutions have been processed. Many cases displayed a discrepancy between histological and molecular diagnoses. Careful re-examination of these often resulted in refinement of the original diagnosis, and improved patient care. Furthermore, samples collected for the reference cohort have led to significant improvements in our understanding of the biology of several tumor types, including the identification of further subgroups for several entities and associations with recurrent copy number changes. Conclusion Our understanding of the molecular alterations underlying brain tumors has grown enormously in recent years, and it is crucial that this is translated into the clinic promptly. DNA methylation profiling is one tool with the potential to become an important part of the diagnostic armoury of neuropathologists. This relatively inexpensive and robust method is well suited to complement standard histopathologic techniques and improve diagnostic accuracy, thereby optimising patient management. It offers a diagnostic assessment completely independent of histopathological evaluation, and may thus be especially valuable in histologically uncertain cases. We are currently expanding our pipeline to include additional diagnostic sites, allowing for further refinement and validation as well as broader access across the globe. Citation Format: David T. W. Jones, David Capper, Martin Sill, Volker Hovestadt, Leonille Schweizer, Roger Fischer, Matthias Schick, Melanie Bewerunge-Hudler, Axel Benner, David Zagzag, Peter Lichter, Matthias A. Karajannis, Kenneth D. Aldape, Andrey Korshunov, Andreas von Deimling, Stefan M. Pfister. Next-generation neuropathology - Improving diagnostic accuracy for brain tumors using DNA methylation array-based molecular profiling. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 1889. doi:10.1158/1538-7445.AM2014-1889
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 18, No. suppl_6 ( 2016-11-01), p. vi110-vi111
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2016
    detail.hit.zdb_id: 2094060-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages