Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    almahu_BV045336039
    Umfang: 1 Online-Ressource (xix, 526 Seiten) : , Illustrationen, Diagramme (überwiegend farbig).
    ISBN: 978-981-13-3259-3
    Serie: Energy, environment, and sustainability
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-981-13-3258-6
    Sprache: Englisch
    Fachgebiete: Allgemeines
    RVK:
    Schlagwort(e): Wasserverschmutzung
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    b3kat_BV045867991
    Umfang: XIX, 526 Seiten , Illustrationen, Diagramme
    ISBN: 9789811332586
    Serie: Energy, environment, and sustainability
    Weitere Ausg.: Erscheint auch als Online-Ausgabe ISBN 978-981-133-259-3
    Sprache: Englisch
    Fachgebiete: Allgemeines
    RVK:
    Schlagwort(e): Wasserverschmutzung
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    edoccha_9959155573602883
    Umfang: 1 online resource (528 pages)
    ISBN: 981-13-3259-2
    Serie: Energy, Environment, and Sustainability,
    Inhalt: This book discusses major technological advances in the treatment and re-use of wastewater. Its focus is on both novel treatment strategies and the modifications and adaptions of conventional processes to optimize the treatment of a complex variety of pollutants, including organic matter, chemicals and micropollutants in different water resources, as well as the integration of water treatment with bioelectricity production. Written by leading researchers in the field, it will be of interest to a wide range of researchers in both industry and academia. .
    Anmerkung: Integrating nanotechnology with environmental biotechnology for sustainable water and wastewater treatment -- Nanofibers for water and wastewater treatment: Recent advances and developments -- Recent trends of metal oxide nanofibers in wastewater treatment -- Role of magnetic nano-materials in the decontamination of water and wastewater -- Cyanotoxins in water: Occurrence, distribution and current approaches to cyanotoxins removal -- Advanced technologies for characterization and prediction of disinfection by-product formation in eutrophic water -- Application of Moringa oleifera Plant for Water Treatment -- Microbial Fuel Cells: Promising Technology for Integrating Water Treatment and Bioelectricity Production -- Recent developments in biological nutrient removal -- From Conventional Activated System to Membrane Aerated Biofilm Reactors: Scope, Challenges and Applications -- Advances of photobioreactor for sustainable water: Engineering aspects, applications and future perspectives -- Non-conventional anaerobic bioreactors for sustainable wastewater treatment -- Microbial Community in Anaerobic Digestion System: Progression in Microbial Ecology -- The role of microbial consortium in bioremediation of tannery wastewater -- Mycoremdiation of xenobiotic compounds -- Advanced and Natural Leachate Treatment Technologies for Tropical Landfills -- Phytoremediation Strategies on Heavy Metal Removal -- Realistic Advancement in Engineered Osmosis for Water Treatment -- Prediction of biofouling on reverse osmosis membranes -- Reverse Osmosis membrane integrity monitoring techniques for virus removal -- Removal of N-nitrosodimethylamine for potable reuse: Reverse osmosis treatment and monitoring technologies -- Membrane Technologies for the Treatment of Pharmaceutical Industry Waste water -- Degradation of Complex Organic Pollutants in Wastewater by Electro-Fenton -- Recent research on ozonation by-products in water and wastewater treatment: Formation, monitoring, mitigation, toxicology and risk assessment -- Current practices for treating wastewater from Petroleum Industry -- Pharmaceutical compounds in water- An Emerging Group of Pollutants with Serious Consequences.
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    UID:
    edocfu_9961031990102883
    Umfang: 1 online resource (534 pages)
    ISBN: 0-443-19181-6
    Anmerkung: Includes index. , Intro -- Current Developments in Biotechnology and Bioengineering: Membrane Technology for Sustainable Water and Energy Management -- Copyright -- Contents -- Contributors -- Preface -- Part A: General on membrane, materials and application -- Chapter 1: Classification of membranes: With respect to pore size, material, and module type -- 1. Introduction -- 2. Types of membranes -- 2.1. MF and UF membranes -- 2.2. NF membranes -- 2.3. RO membranes -- 3. Materials of membrane -- 3.1. Organic membrane -- 3.2. Inorganic membranes -- 3.3. Hybrid membranes -- 3.4. Novel materials for membrane -- 4. Membrane configurations and modules -- 5. Conclusions and perspectives -- References -- Chapter 2: Photocatalytic membrane reactors (PMRs) for hydrogen production -- 1. Introduction -- 2. Photocatalytic material-based membranes -- 2.1. Definition -- 2.2. Photocatalytic materials -- 2.2.1. Pure semiconductors -- 2.2.2. Composite -- 3. Membrane-based photocatalytic system -- 3.1. Hydrogen production with membrane filtration -- 3.2. Photocatalytic membranes -- 3.2.1. Photocatalyst-coated membranes -- 3.2.2. Photocatalyst-blended membranes -- 3.2.3. Free-standing photocatalytic membranes -- 3.3. Configuration and operation of photocatalytic membrane reactors -- 4. Factors affecting the hydrogen production performance of PMRs -- 4.1. Photocatalyst material characteristics -- 4.2. Operation mode -- 4.3. Light source -- 5. Conclusions and perspectives -- Acknowledgments -- References -- Chapter 3: In situ real-time monitoring technologies for fouling detection in membrane processes -- 1. Introduction -- 2. Foulants and their conventional quantifications in water samples -- 2.1. Particles -- 2.2. Organics -- 2.3. Inorganics -- 2.4. Microbes -- 3. Conventional technologies for detecting fouling -- 3.1. Membrane autopsy. , 3.2. Confocal laser scanning microscopy (CLSM) -- 3.3. Atomic force microscopy (AFM) -- 3.4. Scanning electron microscope/energy-dispersive X-ray spectroscopy (SEM-EDX) -- 3.5. Fourier transform infrared spectroscopy (FT-IR) -- 3.6. Contact angle -- 4. Novel technologies for detecting fouling -- 4.1. Fouling observation on pressurized microfiltration/ultrafiltration (MF/UF) membrane systems -- 4.1.1. Optical coherence tomography (OCT) technology -- 4.1.2. In situ EEM (solid-phase fluorescence EEM, SPF-EEM) -- 4.1.3. In situ real-time investigations by using the quartz crystal microbalance with dissipation monitoring (QCM-D) -- 4.1.4. Electrochemical impedance spectroscopy (EIS) -- 4.2. Fouling observation on the pressurized nanofiltration/reverse osmosis (NF/RO) membrane systems -- 4.2.1. Adenosine triphosphate (ATP) measurement -- 4.2.2. Electrochemical impedance spectroscopy (EIS) -- 4.2.3. Real-time computational imaging by using a digital camera -- 4.2.4. Excitation emission matrix-Parallel factor analysis (EEM-PARAFAC) -- 4.3. Fouling detection on the nonpressurized forward osmosis (FO) system -- 4.3.1. Direct techniques -- 4.3.2. Optical coherence tomography (OCT) -- 4.3.3. Confocal laser scanning microscopy (CLSM) -- 4.4. Fouling detection on the nonpressurized membrane distillation (MD) system -- 4.4.1. Direct observation -- 4.4.2. Optical coherence tomography (OCT) -- 4.4.3. Electrical impedance spectroscopy (EIS) -- 4.5. Fouling observation on the nonpressurized electrodialysis (ED) system -- 4.5.1. Electrical impedance spectroscopy (EIS) -- 4.5.2. Transmembrane electric potential (TMEP) -- 4.6. Fouling observation on the nonpressurized capacitive deionization (CDI) system -- 4.6.1. Electrical impedance spectroscopy (EIS) -- 5. Conclusions and perspectives -- References. , Chapter 4: Life-cycle assessment of membrane-based desalination technologies and alternatives -- 1. Introduction -- 2. Desalination technologies -- 2.1. Reverse osmosis (RO) desalination technology -- 2.2. Multistages flash (MSF) -- 2.3. Multieffect distillation (MED) -- 2.4. Capacitive deionization (CDI) -- 2.5. Membrane distillation (MD/Memstill) -- 3. Life-cycle environmental impacts of desalination -- 3.1. Life-cycle inventory (LCI) review -- 3.2. Global warming potential -- 3.2.1. RO -- 3.2.2. MED -- 3.2.3. MSF -- 3.2.4. CDI -- 3.3. Average of environmental impacts of different desalination technologies -- 4. Carbon footprint and correlation to the geography of first ranked countries in desalination capacities -- 4.1. The number of peer-reviewed scientific publications correlated to the capacity of desalination plants -- 4.2. The impact of energy grid mix on the carbon footprint in desalination -- 5. Techno-economic assessment (TEA) of different desalination technologies -- 6. Conclusions and perspectives -- References -- Part B: Applications of membrane technology for water and wastewater treatment -- Chapter 5: Aerobic and anaerobic membrane bioreactors for seafood processing wastewater treatment -- 1. Introduction -- 2. Membrane bioreactor technologies -- 2.1. Aerobic membrane bioreactor (AMBR) -- 2.1.1. Mechanism of aerobic process -- 2.1.2. Technical characteristics of MBR -- 2.1.3. Effects of salinity on MBR -- 2.1.4. Physicochemical properties -- 2.1.4.1. Microorganism properties -- 2.1.4.2. Membrane properties -- 2.1.5. Application of aerobic MBR in seafood processing wastewater treatment -- 2.2. Anaerobic membrane bioreactor (AnMBR) -- 2.2.1. Mechanism of the anaerobic process -- 2.2.2. Technical characteristics of AnMBR -- 2.2.3. Effects of salinity on AnMBR -- 2.2.3.1. Microorganism properties -- 2.2.3.2. Membrane properties. , 2.2.3.3. Biogas production -- 2.2.4. Application of AnMBR in seafood processing wastewater treatment -- 2.2.5. Energy recovery -- 2.3. Advantages and disadvantages of MBR and AnMBR -- 3. Conclusions and perspectives -- Acknowledgments -- References -- Chapter 6: Ultralow pressure membrane filtration for water and wastewater treatment -- 1. Introduction -- 2. Terminology and applications of ultralow pressure membrane filtration (ULPMF) -- 2.1. Ultralow pressure -- 2.2. ULPMF system and operation -- 2.3. Applications -- 2.3.1. Decentralized potable water treatment treating surface or rainwater -- 2.3.2. Pretreatment of seawater desalination using reverse osmosis -- 2.3.3. Filtration of wastewater and gray water -- 3. Characteristics of ULPMF processes -- 3.1. The stable flux of ULPMF -- 3.2. Enhanced organic removal -- 3.3. Biofilm ecosystem -- 3.3.1. Morphology -- 3.3.2. Composition -- 3.3.3. Component and composition of organic/inorganic substances -- 4. Factors influencing ULPMF performance -- 4.1. Feed -- 4.2. Dissolved oxygen and temperature -- 4.3. Membrane material and type and properties -- 4.4. Operation pressure -- 4.5. Continuous vs intermittent operation -- 4.6. Shear conditions -- 4.7. Biotechnology and bioengineering -- 5. Process integration -- 6. Economic assessment -- 6.1. Cost factors -- 6.2. Cost comparison of ULPMF with the conventional MF/UF or MBR -- 7. Environmental impact and sustainability assessments -- 7.1. Environmental impact assessment of ULPMF -- 7.2. Overall sustainability assessment of ULPMF -- 7.2.1. Gravity-driven membrane filtration as a sustainable ULPMF -- 7.2.2. ULPMF as a pre- or posttreatment technique for other technologies -- 7.2.3. ULPMF as a sink for EOL membranes -- 8. Conclusions and perspectives -- References -- Chapter 7: Commercial scale membrane-based produced water treatment plant -- 1. Introduction. , 2. Produced-water treatment steps and technologies -- 3. Membrane technologies in produced-water treatment -- 3.1. Membrane processes -- 3.2. Membrane fouling -- 4. Integrated membrane system -- 5. Commercial membrane technologies for produced-water treatment -- 6. Conclusions and perspectives -- References -- Chapter 8: Membrane bioreactor for wastewater treatment: Fouling and abatement strategies -- 1. Introduction -- 2. Configuration and types of membrane bioreactors -- 3. Aerobic and anaerobic MBR -- 3.1. Aerobic membrane bioreactor -- 3.2. Anaerobic membrane bioreactor -- 4. Aerobic versus anaerobic treatment and AnMBR -- 5. Fouling, the main hindrance in the widespread use of MBR -- 5.1. Types of fouling -- 5.2. Fouling mechanism in membrane bioreactors -- 6. Factors affecting fouling in MBR -- 6.1. Membrane characteristics -- 6.1.1. Membrane material -- 6.1.2. Hydrophobicity, hydrophilicity, and roughness of the membrane -- 6.1.3. Pore size and porosity -- 6.2. Feed characteristics -- 6.2.1. Particle size and concentration -- 6.2.2. Ionic strength, pH, and salinity -- 6.2.3. Hydrophilicity/hydrophobicity of NOM -- 6.2.4. Molecular size of organics -- 6.3. Operational conditions -- 6.3.1. MLSS concentrations -- 6.3.2. OLR, SRT, HRT, F:M -- 6.3.3. Temperature -- 6.3.4. COD:N -- 6.3.5. Operating mode/transmembrane pressure (TMP) -- 6.3.6. Aeration -- 6.3.7. Dissolved oxygen -- 7. Fouling abatement strategies -- 7.1. Physiochemical strategies -- 7.1.1. Relaxation and backwashing with permeate -- 7.1.2. Chemicals enhanced backwash -- 7.1.3. Air sparging -- 7.1.4. Sonication -- 7.1.5. Adsorbent and granular media addition -- 7.1.6. Coagulant addition -- 7.2. Biological strategies: Quorum sensing abatement through quorum quenching -- 7.2.1. Quorum sensing -- 7.2.2. Quorum quenching -- 8. Conclusions and perspectives -- References. , Chapter 9: Membrane and filtration processes for microplastic removal.
    Weitere Ausg.: Print version: Bui, Xuan-Thanh Current Developments in Biotechnology and Bioengineering San Diego : Elsevier,c2023 ISBN 9780443191800
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    UID:
    edoccha_9961031990102883
    Umfang: 1 online resource (534 pages)
    ISBN: 0-443-19181-6
    Anmerkung: Includes index. , Intro -- Current Developments in Biotechnology and Bioengineering: Membrane Technology for Sustainable Water and Energy Management -- Copyright -- Contents -- Contributors -- Preface -- Part A: General on membrane, materials and application -- Chapter 1: Classification of membranes: With respect to pore size, material, and module type -- 1. Introduction -- 2. Types of membranes -- 2.1. MF and UF membranes -- 2.2. NF membranes -- 2.3. RO membranes -- 3. Materials of membrane -- 3.1. Organic membrane -- 3.2. Inorganic membranes -- 3.3. Hybrid membranes -- 3.4. Novel materials for membrane -- 4. Membrane configurations and modules -- 5. Conclusions and perspectives -- References -- Chapter 2: Photocatalytic membrane reactors (PMRs) for hydrogen production -- 1. Introduction -- 2. Photocatalytic material-based membranes -- 2.1. Definition -- 2.2. Photocatalytic materials -- 2.2.1. Pure semiconductors -- 2.2.2. Composite -- 3. Membrane-based photocatalytic system -- 3.1. Hydrogen production with membrane filtration -- 3.2. Photocatalytic membranes -- 3.2.1. Photocatalyst-coated membranes -- 3.2.2. Photocatalyst-blended membranes -- 3.2.3. Free-standing photocatalytic membranes -- 3.3. Configuration and operation of photocatalytic membrane reactors -- 4. Factors affecting the hydrogen production performance of PMRs -- 4.1. Photocatalyst material characteristics -- 4.2. Operation mode -- 4.3. Light source -- 5. Conclusions and perspectives -- Acknowledgments -- References -- Chapter 3: In situ real-time monitoring technologies for fouling detection in membrane processes -- 1. Introduction -- 2. Foulants and their conventional quantifications in water samples -- 2.1. Particles -- 2.2. Organics -- 2.3. Inorganics -- 2.4. Microbes -- 3. Conventional technologies for detecting fouling -- 3.1. Membrane autopsy. , 3.2. Confocal laser scanning microscopy (CLSM) -- 3.3. Atomic force microscopy (AFM) -- 3.4. Scanning electron microscope/energy-dispersive X-ray spectroscopy (SEM-EDX) -- 3.5. Fourier transform infrared spectroscopy (FT-IR) -- 3.6. Contact angle -- 4. Novel technologies for detecting fouling -- 4.1. Fouling observation on pressurized microfiltration/ultrafiltration (MF/UF) membrane systems -- 4.1.1. Optical coherence tomography (OCT) technology -- 4.1.2. In situ EEM (solid-phase fluorescence EEM, SPF-EEM) -- 4.1.3. In situ real-time investigations by using the quartz crystal microbalance with dissipation monitoring (QCM-D) -- 4.1.4. Electrochemical impedance spectroscopy (EIS) -- 4.2. Fouling observation on the pressurized nanofiltration/reverse osmosis (NF/RO) membrane systems -- 4.2.1. Adenosine triphosphate (ATP) measurement -- 4.2.2. Electrochemical impedance spectroscopy (EIS) -- 4.2.3. Real-time computational imaging by using a digital camera -- 4.2.4. Excitation emission matrix-Parallel factor analysis (EEM-PARAFAC) -- 4.3. Fouling detection on the nonpressurized forward osmosis (FO) system -- 4.3.1. Direct techniques -- 4.3.2. Optical coherence tomography (OCT) -- 4.3.3. Confocal laser scanning microscopy (CLSM) -- 4.4. Fouling detection on the nonpressurized membrane distillation (MD) system -- 4.4.1. Direct observation -- 4.4.2. Optical coherence tomography (OCT) -- 4.4.3. Electrical impedance spectroscopy (EIS) -- 4.5. Fouling observation on the nonpressurized electrodialysis (ED) system -- 4.5.1. Electrical impedance spectroscopy (EIS) -- 4.5.2. Transmembrane electric potential (TMEP) -- 4.6. Fouling observation on the nonpressurized capacitive deionization (CDI) system -- 4.6.1. Electrical impedance spectroscopy (EIS) -- 5. Conclusions and perspectives -- References. , Chapter 4: Life-cycle assessment of membrane-based desalination technologies and alternatives -- 1. Introduction -- 2. Desalination technologies -- 2.1. Reverse osmosis (RO) desalination technology -- 2.2. Multistages flash (MSF) -- 2.3. Multieffect distillation (MED) -- 2.4. Capacitive deionization (CDI) -- 2.5. Membrane distillation (MD/Memstill) -- 3. Life-cycle environmental impacts of desalination -- 3.1. Life-cycle inventory (LCI) review -- 3.2. Global warming potential -- 3.2.1. RO -- 3.2.2. MED -- 3.2.3. MSF -- 3.2.4. CDI -- 3.3. Average of environmental impacts of different desalination technologies -- 4. Carbon footprint and correlation to the geography of first ranked countries in desalination capacities -- 4.1. The number of peer-reviewed scientific publications correlated to the capacity of desalination plants -- 4.2. The impact of energy grid mix on the carbon footprint in desalination -- 5. Techno-economic assessment (TEA) of different desalination technologies -- 6. Conclusions and perspectives -- References -- Part B: Applications of membrane technology for water and wastewater treatment -- Chapter 5: Aerobic and anaerobic membrane bioreactors for seafood processing wastewater treatment -- 1. Introduction -- 2. Membrane bioreactor technologies -- 2.1. Aerobic membrane bioreactor (AMBR) -- 2.1.1. Mechanism of aerobic process -- 2.1.2. Technical characteristics of MBR -- 2.1.3. Effects of salinity on MBR -- 2.1.4. Physicochemical properties -- 2.1.4.1. Microorganism properties -- 2.1.4.2. Membrane properties -- 2.1.5. Application of aerobic MBR in seafood processing wastewater treatment -- 2.2. Anaerobic membrane bioreactor (AnMBR) -- 2.2.1. Mechanism of the anaerobic process -- 2.2.2. Technical characteristics of AnMBR -- 2.2.3. Effects of salinity on AnMBR -- 2.2.3.1. Microorganism properties -- 2.2.3.2. Membrane properties. , 2.2.3.3. Biogas production -- 2.2.4. Application of AnMBR in seafood processing wastewater treatment -- 2.2.5. Energy recovery -- 2.3. Advantages and disadvantages of MBR and AnMBR -- 3. Conclusions and perspectives -- Acknowledgments -- References -- Chapter 6: Ultralow pressure membrane filtration for water and wastewater treatment -- 1. Introduction -- 2. Terminology and applications of ultralow pressure membrane filtration (ULPMF) -- 2.1. Ultralow pressure -- 2.2. ULPMF system and operation -- 2.3. Applications -- 2.3.1. Decentralized potable water treatment treating surface or rainwater -- 2.3.2. Pretreatment of seawater desalination using reverse osmosis -- 2.3.3. Filtration of wastewater and gray water -- 3. Characteristics of ULPMF processes -- 3.1. The stable flux of ULPMF -- 3.2. Enhanced organic removal -- 3.3. Biofilm ecosystem -- 3.3.1. Morphology -- 3.3.2. Composition -- 3.3.3. Component and composition of organic/inorganic substances -- 4. Factors influencing ULPMF performance -- 4.1. Feed -- 4.2. Dissolved oxygen and temperature -- 4.3. Membrane material and type and properties -- 4.4. Operation pressure -- 4.5. Continuous vs intermittent operation -- 4.6. Shear conditions -- 4.7. Biotechnology and bioengineering -- 5. Process integration -- 6. Economic assessment -- 6.1. Cost factors -- 6.2. Cost comparison of ULPMF with the conventional MF/UF or MBR -- 7. Environmental impact and sustainability assessments -- 7.1. Environmental impact assessment of ULPMF -- 7.2. Overall sustainability assessment of ULPMF -- 7.2.1. Gravity-driven membrane filtration as a sustainable ULPMF -- 7.2.2. ULPMF as a pre- or posttreatment technique for other technologies -- 7.2.3. ULPMF as a sink for EOL membranes -- 8. Conclusions and perspectives -- References -- Chapter 7: Commercial scale membrane-based produced water treatment plant -- 1. Introduction. , 2. Produced-water treatment steps and technologies -- 3. Membrane technologies in produced-water treatment -- 3.1. Membrane processes -- 3.2. Membrane fouling -- 4. Integrated membrane system -- 5. Commercial membrane technologies for produced-water treatment -- 6. Conclusions and perspectives -- References -- Chapter 8: Membrane bioreactor for wastewater treatment: Fouling and abatement strategies -- 1. Introduction -- 2. Configuration and types of membrane bioreactors -- 3. Aerobic and anaerobic MBR -- 3.1. Aerobic membrane bioreactor -- 3.2. Anaerobic membrane bioreactor -- 4. Aerobic versus anaerobic treatment and AnMBR -- 5. Fouling, the main hindrance in the widespread use of MBR -- 5.1. Types of fouling -- 5.2. Fouling mechanism in membrane bioreactors -- 6. Factors affecting fouling in MBR -- 6.1. Membrane characteristics -- 6.1.1. Membrane material -- 6.1.2. Hydrophobicity, hydrophilicity, and roughness of the membrane -- 6.1.3. Pore size and porosity -- 6.2. Feed characteristics -- 6.2.1. Particle size and concentration -- 6.2.2. Ionic strength, pH, and salinity -- 6.2.3. Hydrophilicity/hydrophobicity of NOM -- 6.2.4. Molecular size of organics -- 6.3. Operational conditions -- 6.3.1. MLSS concentrations -- 6.3.2. OLR, SRT, HRT, F:M -- 6.3.3. Temperature -- 6.3.4. COD:N -- 6.3.5. Operating mode/transmembrane pressure (TMP) -- 6.3.6. Aeration -- 6.3.7. Dissolved oxygen -- 7. Fouling abatement strategies -- 7.1. Physiochemical strategies -- 7.1.1. Relaxation and backwashing with permeate -- 7.1.2. Chemicals enhanced backwash -- 7.1.3. Air sparging -- 7.1.4. Sonication -- 7.1.5. Adsorbent and granular media addition -- 7.1.6. Coagulant addition -- 7.2. Biological strategies: Quorum sensing abatement through quorum quenching -- 7.2.1. Quorum sensing -- 7.2.2. Quorum quenching -- 8. Conclusions and perspectives -- References. , Chapter 9: Membrane and filtration processes for microplastic removal.
    Weitere Ausg.: Print version: Bui, Xuan-Thanh Current Developments in Biotechnology and Bioengineering San Diego : Elsevier,c2023 ISBN 9780443191800
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    UID:
    almahu_9949455315902882
    Umfang: 1 online resource (534 pages)
    ISBN: 0-443-19181-6
    Anmerkung: Includes index. , Intro -- Current Developments in Biotechnology and Bioengineering: Membrane Technology for Sustainable Water and Energy Management -- Copyright -- Contents -- Contributors -- Preface -- Part A: General on membrane, materials and application -- Chapter 1: Classification of membranes: With respect to pore size, material, and module type -- 1. Introduction -- 2. Types of membranes -- 2.1. MF and UF membranes -- 2.2. NF membranes -- 2.3. RO membranes -- 3. Materials of membrane -- 3.1. Organic membrane -- 3.2. Inorganic membranes -- 3.3. Hybrid membranes -- 3.4. Novel materials for membrane -- 4. Membrane configurations and modules -- 5. Conclusions and perspectives -- References -- Chapter 2: Photocatalytic membrane reactors (PMRs) for hydrogen production -- 1. Introduction -- 2. Photocatalytic material-based membranes -- 2.1. Definition -- 2.2. Photocatalytic materials -- 2.2.1. Pure semiconductors -- 2.2.2. Composite -- 3. Membrane-based photocatalytic system -- 3.1. Hydrogen production with membrane filtration -- 3.2. Photocatalytic membranes -- 3.2.1. Photocatalyst-coated membranes -- 3.2.2. Photocatalyst-blended membranes -- 3.2.3. Free-standing photocatalytic membranes -- 3.3. Configuration and operation of photocatalytic membrane reactors -- 4. Factors affecting the hydrogen production performance of PMRs -- 4.1. Photocatalyst material characteristics -- 4.2. Operation mode -- 4.3. Light source -- 5. Conclusions and perspectives -- Acknowledgments -- References -- Chapter 3: In situ real-time monitoring technologies for fouling detection in membrane processes -- 1. Introduction -- 2. Foulants and their conventional quantifications in water samples -- 2.1. Particles -- 2.2. Organics -- 2.3. Inorganics -- 2.4. Microbes -- 3. Conventional technologies for detecting fouling -- 3.1. Membrane autopsy. , 3.2. Confocal laser scanning microscopy (CLSM) -- 3.3. Atomic force microscopy (AFM) -- 3.4. Scanning electron microscope/energy-dispersive X-ray spectroscopy (SEM-EDX) -- 3.5. Fourier transform infrared spectroscopy (FT-IR) -- 3.6. Contact angle -- 4. Novel technologies for detecting fouling -- 4.1. Fouling observation on pressurized microfiltration/ultrafiltration (MF/UF) membrane systems -- 4.1.1. Optical coherence tomography (OCT) technology -- 4.1.2. In situ EEM (solid-phase fluorescence EEM, SPF-EEM) -- 4.1.3. In situ real-time investigations by using the quartz crystal microbalance with dissipation monitoring (QCM-D) -- 4.1.4. Electrochemical impedance spectroscopy (EIS) -- 4.2. Fouling observation on the pressurized nanofiltration/reverse osmosis (NF/RO) membrane systems -- 4.2.1. Adenosine triphosphate (ATP) measurement -- 4.2.2. Electrochemical impedance spectroscopy (EIS) -- 4.2.3. Real-time computational imaging by using a digital camera -- 4.2.4. Excitation emission matrix-Parallel factor analysis (EEM-PARAFAC) -- 4.3. Fouling detection on the nonpressurized forward osmosis (FO) system -- 4.3.1. Direct techniques -- 4.3.2. Optical coherence tomography (OCT) -- 4.3.3. Confocal laser scanning microscopy (CLSM) -- 4.4. Fouling detection on the nonpressurized membrane distillation (MD) system -- 4.4.1. Direct observation -- 4.4.2. Optical coherence tomography (OCT) -- 4.4.3. Electrical impedance spectroscopy (EIS) -- 4.5. Fouling observation on the nonpressurized electrodialysis (ED) system -- 4.5.1. Electrical impedance spectroscopy (EIS) -- 4.5.2. Transmembrane electric potential (TMEP) -- 4.6. Fouling observation on the nonpressurized capacitive deionization (CDI) system -- 4.6.1. Electrical impedance spectroscopy (EIS) -- 5. Conclusions and perspectives -- References. , Chapter 4: Life-cycle assessment of membrane-based desalination technologies and alternatives -- 1. Introduction -- 2. Desalination technologies -- 2.1. Reverse osmosis (RO) desalination technology -- 2.2. Multistages flash (MSF) -- 2.3. Multieffect distillation (MED) -- 2.4. Capacitive deionization (CDI) -- 2.5. Membrane distillation (MD/Memstill) -- 3. Life-cycle environmental impacts of desalination -- 3.1. Life-cycle inventory (LCI) review -- 3.2. Global warming potential -- 3.2.1. RO -- 3.2.2. MED -- 3.2.3. MSF -- 3.2.4. CDI -- 3.3. Average of environmental impacts of different desalination technologies -- 4. Carbon footprint and correlation to the geography of first ranked countries in desalination capacities -- 4.1. The number of peer-reviewed scientific publications correlated to the capacity of desalination plants -- 4.2. The impact of energy grid mix on the carbon footprint in desalination -- 5. Techno-economic assessment (TEA) of different desalination technologies -- 6. Conclusions and perspectives -- References -- Part B: Applications of membrane technology for water and wastewater treatment -- Chapter 5: Aerobic and anaerobic membrane bioreactors for seafood processing wastewater treatment -- 1. Introduction -- 2. Membrane bioreactor technologies -- 2.1. Aerobic membrane bioreactor (AMBR) -- 2.1.1. Mechanism of aerobic process -- 2.1.2. Technical characteristics of MBR -- 2.1.3. Effects of salinity on MBR -- 2.1.4. Physicochemical properties -- 2.1.4.1. Microorganism properties -- 2.1.4.2. Membrane properties -- 2.1.5. Application of aerobic MBR in seafood processing wastewater treatment -- 2.2. Anaerobic membrane bioreactor (AnMBR) -- 2.2.1. Mechanism of the anaerobic process -- 2.2.2. Technical characteristics of AnMBR -- 2.2.3. Effects of salinity on AnMBR -- 2.2.3.1. Microorganism properties -- 2.2.3.2. Membrane properties. , 2.2.3.3. Biogas production -- 2.2.4. Application of AnMBR in seafood processing wastewater treatment -- 2.2.5. Energy recovery -- 2.3. Advantages and disadvantages of MBR and AnMBR -- 3. Conclusions and perspectives -- Acknowledgments -- References -- Chapter 6: Ultralow pressure membrane filtration for water and wastewater treatment -- 1. Introduction -- 2. Terminology and applications of ultralow pressure membrane filtration (ULPMF) -- 2.1. Ultralow pressure -- 2.2. ULPMF system and operation -- 2.3. Applications -- 2.3.1. Decentralized potable water treatment treating surface or rainwater -- 2.3.2. Pretreatment of seawater desalination using reverse osmosis -- 2.3.3. Filtration of wastewater and gray water -- 3. Characteristics of ULPMF processes -- 3.1. The stable flux of ULPMF -- 3.2. Enhanced organic removal -- 3.3. Biofilm ecosystem -- 3.3.1. Morphology -- 3.3.2. Composition -- 3.3.3. Component and composition of organic/inorganic substances -- 4. Factors influencing ULPMF performance -- 4.1. Feed -- 4.2. Dissolved oxygen and temperature -- 4.3. Membrane material and type and properties -- 4.4. Operation pressure -- 4.5. Continuous vs intermittent operation -- 4.6. Shear conditions -- 4.7. Biotechnology and bioengineering -- 5. Process integration -- 6. Economic assessment -- 6.1. Cost factors -- 6.2. Cost comparison of ULPMF with the conventional MF/UF or MBR -- 7. Environmental impact and sustainability assessments -- 7.1. Environmental impact assessment of ULPMF -- 7.2. Overall sustainability assessment of ULPMF -- 7.2.1. Gravity-driven membrane filtration as a sustainable ULPMF -- 7.2.2. ULPMF as a pre- or posttreatment technique for other technologies -- 7.2.3. ULPMF as a sink for EOL membranes -- 8. Conclusions and perspectives -- References -- Chapter 7: Commercial scale membrane-based produced water treatment plant -- 1. Introduction. , 2. Produced-water treatment steps and technologies -- 3. Membrane technologies in produced-water treatment -- 3.1. Membrane processes -- 3.2. Membrane fouling -- 4. Integrated membrane system -- 5. Commercial membrane technologies for produced-water treatment -- 6. Conclusions and perspectives -- References -- Chapter 8: Membrane bioreactor for wastewater treatment: Fouling and abatement strategies -- 1. Introduction -- 2. Configuration and types of membrane bioreactors -- 3. Aerobic and anaerobic MBR -- 3.1. Aerobic membrane bioreactor -- 3.2. Anaerobic membrane bioreactor -- 4. Aerobic versus anaerobic treatment and AnMBR -- 5. Fouling, the main hindrance in the widespread use of MBR -- 5.1. Types of fouling -- 5.2. Fouling mechanism in membrane bioreactors -- 6. Factors affecting fouling in MBR -- 6.1. Membrane characteristics -- 6.1.1. Membrane material -- 6.1.2. Hydrophobicity, hydrophilicity, and roughness of the membrane -- 6.1.3. Pore size and porosity -- 6.2. Feed characteristics -- 6.2.1. Particle size and concentration -- 6.2.2. Ionic strength, pH, and salinity -- 6.2.3. Hydrophilicity/hydrophobicity of NOM -- 6.2.4. Molecular size of organics -- 6.3. Operational conditions -- 6.3.1. MLSS concentrations -- 6.3.2. OLR, SRT, HRT, F:M -- 6.3.3. Temperature -- 6.3.4. COD:N -- 6.3.5. Operating mode/transmembrane pressure (TMP) -- 6.3.6. Aeration -- 6.3.7. Dissolved oxygen -- 7. Fouling abatement strategies -- 7.1. Physiochemical strategies -- 7.1.1. Relaxation and backwashing with permeate -- 7.1.2. Chemicals enhanced backwash -- 7.1.3. Air sparging -- 7.1.4. Sonication -- 7.1.5. Adsorbent and granular media addition -- 7.1.6. Coagulant addition -- 7.2. Biological strategies: Quorum sensing abatement through quorum quenching -- 7.2.1. Quorum sensing -- 7.2.2. Quorum quenching -- 8. Conclusions and perspectives -- References. , Chapter 9: Membrane and filtration processes for microplastic removal.
    Weitere Ausg.: Print version: Bui, Xuan-Thanh Current Developments in Biotechnology and Bioengineering San Diego : Elsevier,c2023 ISBN 9780443191800
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    Amsterdam, Netherlands :Elsevier,
    UID:
    edoccha_9960838723602883
    Umfang: 1 online resource (640 pages)
    ISBN: 0-323-99943-3 , 9780323998741
    Serie: Current developments in biotechnology and bioengineering series
    Inhalt: Advances in Biological Wastewater Treatment Systems covers different recent advanced technologies, including green technologies, for biological wastewater treatment and wastewater reuse. The technologies involve novel biological processes and/or modified processes coupled with nano materials for improving the performance of the existing treatment processes. The book also describes treatment strategies for the current pollution from complex organic matter, nutrients, toxic substances, micro plastics and emerging micro pollutants in different water resources. The treatment processes describe the recent developed technologies for wastewater treatment and reuse such as biological nutrient removal, bioreactors, photobioreactors, membrane bioreactors, wetlands, algae-bacteria process, natural treatments, integrated/hybrid bio systems, etc. The novel bio systems include aerobic, anaerobic, facultative operation modes with various of types of microorganisms.
    Weitere Ausg.: Print version: Bui, Xuan-Thanh Current Developments in Biotechnology and Bioengineering San Diego : Elsevier,c2022
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    Amsterdam, Netherlands :Elsevier,
    UID:
    edocfu_9960838723602883
    Umfang: 1 online resource (640 pages)
    ISBN: 0-323-99943-3 , 9780323998741
    Serie: Current developments in biotechnology and bioengineering series
    Inhalt: Advances in Biological Wastewater Treatment Systems covers different recent advanced technologies, including green technologies, for biological wastewater treatment and wastewater reuse. The technologies involve novel biological processes and/or modified processes coupled with nano materials for improving the performance of the existing treatment processes. The book also describes treatment strategies for the current pollution from complex organic matter, nutrients, toxic substances, micro plastics and emerging micro pollutants in different water resources. The treatment processes describe the recent developed technologies for wastewater treatment and reuse such as biological nutrient removal, bioreactors, photobioreactors, membrane bioreactors, wetlands, algae-bacteria process, natural treatments, integrated/hybrid bio systems, etc. The novel bio systems include aerobic, anaerobic, facultative operation modes with various of types of microorganisms.
    Weitere Ausg.: Print version: Bui, Xuan-Thanh Current Developments in Biotechnology and Bioengineering San Diego : Elsevier,c2022
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    Amsterdam, Netherlands :Elsevier,
    UID:
    almahu_9949550140502882
    Umfang: 1 online resource (640 pages)
    ISBN: 0-323-99943-3 , 9780323998741
    Serie: Current developments in biotechnology and bioengineering series
    Inhalt: Advances in Biological Wastewater Treatment Systems covers different recent advanced technologies, including green technologies, for biological wastewater treatment and wastewater reuse. The technologies involve novel biological processes and/or modified processes coupled with nano materials for improving the performance of the existing treatment processes. The book also describes treatment strategies for the current pollution from complex organic matter, nutrients, toxic substances, micro plastics and emerging micro pollutants in different water resources. The treatment processes describe the recent developed technologies for wastewater treatment and reuse such as biological nutrient removal, bioreactors, photobioreactors, membrane bioreactors, wetlands, algae-bacteria process, natural treatments, integrated/hybrid bio systems, etc. The novel bio systems include aerobic, anaerobic, facultative operation modes with various of types of microorganisms.
    Weitere Ausg.: Print version: Bui, Xuan-Thanh Current Developments in Biotechnology and Bioengineering San Diego : Elsevier,c2022
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    UID:
    almahu_9949865886702882
    Umfang: 1 online resource (xiv, 164 pages) : , illustrations.
    Ausgabe: First edition.
    ISBN: 9781003386902 , 1003386903 , 9781040004302 , 104000430X , 9781040004401 , 1040004407
    Serie: Sustainable industrial and environmental bioprocesses
    Inhalt: This handbook discusses the relationships and effects of climate change on waste treatment and its sustainable management. The waste management sector is in a unique position to transition from a minor source of global greenhouse gas (GHG) emissions to a major contributor to reducing GHG emissions. This book compiles the potential impacts and benefits of various waste management systems in terms of climate impact. It investigates the global climate impact of municipal solid waste, commercial and industrial waste, agricultural waste, and hazardous waste management systems. Key features: Reviews advanced and innovative processes for sustainable waste management Covers green waste treatment technologies using microbes, green soldier flies, earthworms and bacteriophages Discusses the negative and positive effects of waste treatment and disposal Provides relevant case studies from different regions of the world Examines the role of climate change on emerging pollutants The book is meant for researchers and professionals in environmental sciences, chemical and biochemical engineering.
    Anmerkung: SECTION A: WASTE MANAGEMENT AND CLIMATE CHANGE Chapter 1 - Emerging green technologies for organic waste managementJeanger P. Juanga-Labayen, Ildefonso Villavecer Labayen, Melissa Montalbo-Lomboy, My Thi Tra Ngo, Phuong Vu Mai Doan Chapter 2 - Phages and their role in natural and directed microbial controlAmro Abd Al Fattah Amara Chapter 3 - Biodegradable Waste Management Technologies to Mitigate Climate ChangeChaichi Devi, Meena Khwairakpam Chapter 4 - Rehabilitation of ecosystem service in hard climate changeHayfa Rajhi and Anouar Bardi SECTION B: WASTE MANAGEMENT AND SUSTAINABILITY Chapter 5 - Sustainable waste management and circular economy paradigmJean Pierre Doussoulin, Qahraman Kakar Chapter 6 - Waste as a source of raw material in circular economy for value-added productsSimone Kubeneck, Caroline Dalastra, Suzana Fátima Bazoti, Júlia Nerling,Gabriel Henrique Klein, Helen Treichel Chapter 7 - Biodrying of municipal solid wastes for producing Refused Derived FuelChart Chiemchaisri, Wilai Chiemchaisri, Sakulrat Sutthiprapa, Ruchira Perera, Noppharit Sutthasil, Panida Payomthip, Komsilp Wangyao, Sirintornthep Towprayoon SECTION C: CASE STUDIES Chapter 8 - Large-scale rotary drum composting for urban organic waste managementSuryateja Pottipati and Ajay S. Kalamdhad Chapter 9 - Integration of technologies for value-added products from industrial waste in Ho Chi Minh CityLe Thi Kim Oanh, Ho Thi Thanh Hien, Huynh Tan Loi, Nguyen Dang Khoa Chapter 10 - Biomedical waste management in Covid-19 pandemicLinh-Thy Le, Xuan-Thanh Bui, Ho Thi Ngoc Ha, Huu Hao Ngo, Sunita Varjani Index
    Weitere Ausg.: Print version: Varjani, Sunita Waste Management in Climate Change and Sustainability Perspectives Milton : Taylor & Francis Group,c2024 ISBN 9781032439075
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz