Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2018  (50)
Type of Medium
Language
Year
  • 2018  (50)
  • 11
    Language: English
    Description: ANNOgesic is the swiss army knife for RNA-Seq based annotation of bacterial/archaeal genomes. It is a modular, command-line tool that can integrate different types of RNA-Seq data based on dRNA-Seq (differential RNA-Seq) or RNA-Seq protocols that inclusde transcript fragmentation to generate high quality genome annotations. It can detect genes, CDSs/tRNAs/rRNAs, transcription starting sites (TSS) and processing sites, transcripts, terminators, untranslated regions (UTR) as well as small RNAs (sRNA), small open reading frames (sORF), circular RNAs, CRISPR related RNAs, riboswitches and RNA-thermometers. It can also perform RNA-RNA and protein-protein interactions prediction. Furthermore, it groups genes into operons and sub-operons and reveal promoter motifs. It can also allocate GO term and subcellular localization to genes. Several of ANNOgesic features are new implementations while other build on well known third-party tools for which it offers adaptive parameter-optimizations. Additionally, numerous visualization and statistics help the user to quickly evaluat feature predictions resulting from an ANNOgesic analysis. The tool was heavily tested with several RNA-Seq data set from bacterial as well as archaeal samples....
    Keywords: Capsule ; Bioinformatics
    Source: DataCite
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Language: English
    In: GigaScience, 01 September 2018, Vol.7(9)
    Description: To understand the gene regulation of an organism of interest, a comprehensive genome annotation is essential. While some features, such as coding sequences, can be computationally predicted with high accuracy based purely on the genomic sequence, others, such as promoter elements or noncoding RNAs, are harder to detect. RNA sequencing (RNA-seq) has proven to be an efficient method to identify these genomic features and to improve genome annotations. However, processing and integrating RNA-seq data in order to generate high-resolution annotations is challenging, time consuming, and requires numerous steps. We have constructed a powerful and modular tool called ANNOgesic that provides the required analyses and simplifies RNA-seq-based bacterial and archaeal genome annotation. It can integrate data from conventional RNA-seq and differential RNA-seq and predicts and annotates numerous features, including small noncoding RNAs, with high precision. The software is available under an open source license (ISCL) at https://pypi.org/project/ANNOgesic/.
    E-ISSN: 2047-217X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Language: English
    In: https://doi.org/10.1371/journal.pgen.1007401
    Description: Invasion of epithelial cells by Salmonella enterica requires expression of genes located in the pathogenicity island I (SPI-1). The expression of SPI-1 genes is very tightly regulated and activated only under specific conditions. Most studies have focused on the regulatory pathways that induce SPI-1 expression. Here, we describe a new regulatory circuit involving CRP-cAMP, a widely established metabolic regulator, in silencing of SPI-1 genes under non-permissive conditions. In CRP-cAMP-deficient strains we detected a strong upregulation of SPI-1 genes in the mid-logarithmic growth phase. Genetic analyses revealed that CRP-cAMP modulates the level of HilD, the master regulator of Salmonella invasion. This regulation occurs at the post-transcriptional level and requires the presence of a newly identified regulatory motif within the hilD 3'UTR. We further demonstrate that in Salmonella the Hfq-dependent sRNA Spot 42 is under the transcriptional repression of CRP-cAMP and, when this transcriptional repression is relieved, Spot 42 exerts a positive effect on hilD expression. In vivo and in vitro assays indicate that Spot 42 targets, through its unstructured region III, the 3'UTR of the hilD transcript. Together, our results highlight the biological relevance of the hilD 3'UTR as a hub for post-transcriptional control of Salmonella invasion gene expression.
    Keywords: Salmonel·La ; Expressió Gènica ; Salmonella ; Gene Expression
    ISSN: 1553-7390
    Source: Universitat de Barcelona
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Language: English
    In: Frontiers in Environmental Science, 01 April 2018, Vol.6
    Description: Soil-borne nitrous oxide (N2O) emissions have a high spatial and temporal variability which is commonly attributed to the occurrence of hotspots and hot moments for microbial activity in aggregated soil. Yet there is only limited information about the biophysical processes that regulate the production and consumption of N2O on microscopic scales in undisturbed soil. In this study, we introduce an experimental framework relying on simplified porous media that circumvents some of the complexities occuring in natural soils while fully accounting for physical constraints believed to control microbial activity in general and denitrification in particular. We used this framework to explore the impact of aggregate size and external oxygen concentration on the kinetics of O2 consumption, as well as CO2 and N2O production. Model aggregates of different sizes (3.5 vs. 7 mm diameter) composed of porous, sintered glass were saturated with a defined growth medium containing roughly 109 cells ml−1 of the facultative anaerobic, nosZ-deficient denitrifier Agrobacterium tumefaciens with N2O as final denitrification product and incubated at five different oxygen levels (0–13 vol-%). We demonstrate that the onset of denitrification depends on the amount of external oxygen and the size of aggregates. Smaller aggregates were better supplied with oxygen due to a larger surface-to-volume ratio, which resulted in faster growth and an earlier onset of denitrification. In larger aggregates, the onset of denitrification was more gradual, but with comparably higher N2O production rates once the anoxic aggregate centers were fully developed. The normalized electron flow from the reduced carbon substrate to N-oxyanions (edenit-/etotal- ratio) could be solely described as a function of initial oxygen concentration in the headspace with a simple, hyperbolic model, for which the two empirical parameters changed with aggregate size in a consistent way. These findings confirm the important role of soil structure on N2O emissions from denitrification by shaping the spatial patterns of microbial activity and anoxia in aggregated soil. Our dataset may serve as a benchmark for constraining or validating spatially explicit, biophysical models of denitrification in aggregated soil.
    Keywords: Greenhouse Gas Emissions ; Denitrification Kinetics ; Microbial Hotspots ; Microsites ; Anoxic Aggregate Centers ; Agrobacterium Tumefaciens ; Environmental Sciences
    E-ISSN: 2296-665X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Language: English
    In: Environmental Technology, 01 February 2018, Vol.39(3), pp.264-276
    Description: Municipal wastewater treatment commonly involves mechanical, biological and chemical treatment steps to protect humans and the environment from adverse effects. Membrane technology has gained increasing attention as an alternative to conventional wastewater treatment due to increased urbanization. Among the available membrane technologies, microfiltration (MF) and forward osmosis (FO) have been selected for this study due to their specific characteristics, such as compactness and efficient removal of particles. In this study, two treatment concepts were evaluated with regard to their specific electricity, energy and area demands. Both concepts would fulfil the Swedish discharge demands for small- and medium-sized wastewater treatment plants at full scale: (1) direct MF and (2) direct FO with seawater as the draw solution. The framework of this study is based on a combination of data obtained from bench- and pilot-scale experiments applying direct MF and FO, respectively. Additionally, available complementary data from a Swedish full-scale wastewater treatment plant and the literature were used to evaluate the concepts in depth. The results of this study indicate that both concepts are net positive with respect to electricity and energy, as more biogas can be produced compared to that using conventional wastewater treatment. Furthermore, the specific area demand is significantly reduced. This study demonstrates that municipal wastewater could be treated in a more energy- and area-efficient manner with techniques that are already commercially available and with future membrane technology.
    Keywords: Biogas Production ; Forward Osmosis ; Membrane Filtration ; Seawater ; Wastewater Treatment ; Engineering
    ISSN: 0959-3330
    E-ISSN: 1479-487X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Language: English
    In: PLoS Genetics, 01 June 2018, Vol.14(6), p.e1007401
    Description: Invasion of epithelial cells by Salmonella enterica requires expression of genes located in the pathogenicity island I (SPI-1). The expression of SPI-1 genes is very tightly regulated and activated only under specific conditions. Most studies have focused on the regulatory pathways that induce SPI-1 expression. Here, we describe a new regulatory circuit involving CRP-cAMP, a widely established metabolic regulator, in silencing of SPI-1 genes under non-permissive conditions. In CRP-cAMP-deficient strains we detected a strong upregulation of SPI-1 genes in the mid-logarithmic growth phase. Genetic analyses revealed that CRP-cAMP modulates the level of HilD, the master regulator of Salmonella invasion. This regulation occurs at the post-transcriptional level and requires the presence of a newly identified regulatory motif within the hilD 3'UTR. We further demonstrate that in Salmonella the Hfq-dependent sRNA Spot 42 is under the transcriptional repression of CRP-cAMP and, when this transcriptional repression is relieved, Spot 42 exerts a positive effect on hilD expression. In vivo and in vitro assays indicate that Spot 42 targets, through its unstructured region III, the 3'UTR of the hilD transcript. Together, our results highlight the biological relevance of the hilD 3'UTR as a hub for post-transcriptional control of Salmonella invasion gene expression.
    Keywords: Biology
    ISSN: 1553-7390
    E-ISSN: 1553-7404
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Language: English
    Description: To understand the gene regulation of an organism of interest, a comprehensive genome annotation is essential. While some features, such as coding sequences, can be computationally predicted with high accuracy based purely on the genomic sequence, others, such as promoter elements or non-coding RNAs are harder to detect. RNA-Seq has proven to be an efficient method to identify these genomic features and to improve genome annotations. However, processing and integrating RNA-Seq data in order to generate high-resolution annotations is challenging, time consuming and requires numerous different steps. We have constructed a powerful and modular tool called ANNOgesic that provides the required analyses and simplifies RNA-Seq-based bacterial and archaeal genome annotation. It can integrate data from conventional RNA-Seq and dRNA-Seq, predicts and annotates numerous features, including small non-coding RNAs, with high precision. The software is available under an open source license (ISCL) at https://pypi.org/project/ANNOgesic/....
    Keywords: Software ; Transcriptomic ; Genome Annotation ; Rna-Seq ; Transcriptomics
    Source: DataCite
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Description: Supplementary data analysis scripts and results for Yu et al. - "ANNOgesic: A Swiss army knife for the RNA-Seq based annotation of bacterial/archaeal genomes"....
    Source: DataCite
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Description: Supplementary data analysis scripts and results for Yu et al. - "ANNOgesic: A Swiss army knife for the RNA-Seq based annotation of bacterial/archaeal genomes"....
    Source: DataCite
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Language: English
    In: Frontiers in Microbiology, 2018, Vol.9, p.1929
    Description: Over the last 60 years, soil microbiologists have accumulated a wealth of experimental data showing that the usual bulk, macroscopic parameters used to characterize soils (e.g., granulometry, pH, soil organic matter and biomass contents) provide insufficient information to describe quantitatively the activity of soil microorganisms and some of its outcomes, like the emission of greenhouse gases. Clearly, new, more appropriate macroscopic parameters are needed, which reflect better the spatial heterogeneity of soils at the microscale (i.e., the pore scale). For a long time, spectroscopic and microscopic tools were lacking to quantify processes at that scale, but major technological advances over the last 15 years have made suitable equipment available to researchers. In this context, the objective of the present article is to review progress achieved to date in the significant research program that has ensued. This program can be rationalized as a sequence of steps, namely the quantification and modeling of the physical-, (bio)chemical-, and microbiological properties of soils, the integration of these different perspectives into a unified theory, its upscaling to the macroscopic scale, and, eventually, the development of new approaches to measure macroscopic soil characteristics. At this stage, significant progress has been achieved on the physical front, and to a lesser extent on the (bio)chemical one as well, both in terms of experiments and modeling. In terms of microbial aspects, whereas a lot of work has been devoted to the modeling of bacterial and fungal activity in soils at the pore scale, the appropriateness of model assumptions cannot be readily assessed because relevant experimental data are extremely scarce. For the overall research to move forward, it will be crucial to make sure that research on the microbial components of soil systems does not keep lagging behind the work on the physical and (bio)chemical characteristics. Concerning the subsequent steps in the program, very little integration of the various disciplinary perspectives has occurred so far, and, as a result, researchers have not yet been able to tackle the scaling up to the macroscopic level. Many challenges, some of them daunting, remain on the path ahead.Fortunately, a number of these challenges may be resolved by brand new measuring equipment that will become commercially available in the very near future.
    Keywords: Life Sciences ; X-Ray Computed ; Upscaling ; Biodiversity ; Soil Microbiology ; Tomography ; Single-Cell Genomics ; Nanosims Imaging ; Biology
    ISSN: 1664-302X
    E-ISSN: 1664-302X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages