Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lang, F
Type of Medium
Language
Year
  • 11
    Language: English
    In: Journal of Soils and Sediments, 2013, Vol.13(3), pp.606-615
    Description: Byline: Horst Schonsky (1), Andre Peters (1), Friederike Lang (2), Stefan Abel (1), Beate Mekiffer (3), Gerd Wessolek (1) Keywords: Column experiment; Construction rubble; Numerical modeling; Sulfate; Urban soil Abstract: Purpose In Berlin and many other cities, technogenic soil substrates from World War II and building and construction debris, in general, play an important role for soil formation and solute transport in the vadose zone. The largest debris landfill in Berlin is the Teufelsberg. Sulfate release from the landfill poses threats to groundwater quality. The scope of this study is to determine and model the processes controlling sulfate release from soils containing construction rubble. Materials and methods Column leaching experiments were conducted to analyze sulfate mobilization from Teufelsberg topsoil material. Flow interruptions of 1 and 7 days were applied. Sulfate release was modeled using a geochemical simulation tool (HP1). The model considered water flux, solute transport, and precipitation/dissolution with first-order kinetics. Results and discussion Sulfate release increased after flow interruptions, although bromide breakthrough indicated physical equilibrium of transport processes. Hence, kinetically limited solution/dissolution of sulfate is assumed. The model was applicable for qualitative description of our experimental results. The estimated equilibrium concentrations of sulfate were one to two orders of magnitude smaller than expected according to the equilibrium constant of gypsum. Conclusions It is assumed that the mobilization and transport of sulfate from debris soil material can be described by an effective model. If sulfate release and transport from soils containing debris is modeled using literature values of thermodynamic constants for gypsum, sulfate concentrations will be overestimated by one to two orders of magnitude. Author Affiliation: (1) Fachgebiet Standortkunde und Bodenschutz, Technische Universitat Berlin, Ernst Reuter Platz 1, 10587, Berlin, Germany (2) Institut fur Bodenkunde und Waldernahrungslehre, Albert Ludwig Universitat Freiburg, Bertoldstr. 17, 79085, Freiburg i.Br., Germany (3) WISTA-MANAGEMENT GMBH, Rudower Chaussee 17, 12489, Berlin, Germany Article History: Registration Date: 01/10/2012 Received Date: 12/12/2011 Accepted Date: 01/10/2012 Online Date: 19/10/2012 Article note: Responsible editor: Jean Louis Morel
    Keywords: Column experiment ; Construction rubble ; Numerical modeling ; Sulfate ; Urban soil
    ISSN: 1439-0108
    E-ISSN: 1614-7480
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Language: English
    In: Science of the Total Environment, 01 December 2015, Vol.535, pp.3-19
    Description: Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering fate and effect of EINP in specific ecosystems (e.g. soil, lake, or riverine systems).
    Keywords: Transport ; Aggregation ; Analytics ; Environment ; Aging ; Ecotoxicology ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Language: English
    In: Science of the Total Environment, 15 December 2018, Vol.645, pp.192-204
    Description: Riverbank filtration systems are important structures that ensure the cleaning of infiltrating surface water for drinking water production. In our study, we investigated the potential risk for a breakthrough of environmentally aged silver nanoparticles (Ag NP) through these systems. Additionally, we identified factors leading to the remobilization of Ag NP accumulated in surficial sediment layers in order to gain insights into remobilization mechanisms. We conducted column experiments with Ag NP in an outdoor pilot plant consisting of water-saturated sediment columns mimicking a riverbank filtration system. The NP had previously been aged in river water, soil extract, and ultrapure water, respectively. We investigated the depth-dependent breakthrough and retention of NP. In subsequent batch experiments, we studied the processes responsible for a remobilization of Ag NP retained in the upper 10 cm of the sediments, induced by ionic strength reduction, natural organic matter (NOM), and mechanical forces. We determined the amount of remobilized Ag by ICP-MS and differentiated between particulate and ionic Ag after remobilization using GFAAS. The presence of Ag-containing heteroaggregates was investigated by combining filtration with single-particle ICP-MS. Single and erratic Ag breakthrough events were mainly found in 30 cm depth and Ag NP were accumulated in the upper 20 cm of the columns. Soil-aged Ag NP showed the lowest retention of only 54%. Remobilization was induced by the reduction of ionic strength and the presence of NOM in combination with mechanical forces. The presence of calcium in the aging- as well as the remobilizing media reduced the remobilization potential. Silver NP were mainly remobilized as heteroaggregates with natural colloids, while dissolution played a minor role. Our study indicates that the breakthrough potential of Ag NP in riverbank filtration systems is generally low, but the aging in soil increases their mobility. Remobilization processes are associated to co-mobilization with natural colloids.
    Keywords: Heteroaggregation ; Nanoparticle Transformation ; Breakthrough ; Mobility ; Reversibility ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Language: English
    In: Geochimica et Cosmochimica Acta, 2006, Vol.70(3), pp.595-607
    Description: Anions of polycarboxylic low-molecular-weight organic acids (LMWOA) compete with phosphate for sorption sites of hydrous Fe and Al oxides. To test whether the sorption of LMWOA anions decreases the accessibility of micropores (〈2 nm) of goethite (α-FeOOH) for phosphate, we studied the kinetics of citrate-induced changes in microporosity and the phosphate sorption kinetics of synthetic goethite in the presence and absence of citrate in batch systems for 3 weeks (500 μM of each ion, pH 5). We also used C-coated goethite obtained after sorption of dissolved organic matter in order to simulate organic coatings in the soil. We analyzed our samples with N adsorption and electrophoretic mobility measurements. Citrate clogged the micropores of both adsorbents by up to 13% within 1 h of contact. The micropore volume decreased with increasing concentration and residence time of citrate. In the absence of citrate, phosphate diffused into micropores of the pure and C-coated goethite. The C coating (5.6 μmol C m ) did not impair the intraparticle diffusion of phosphate. In the presence of citrate, the diffusion of phosphate into the micropores of both adsorbents was strongly impaired. We attribute this to the micropore clogging and the ligand-induced dissolution of goethite by citrate. While the diffusion limitation of phosphate by citrate was stronger when citrate was added before phosphate to pure goethite, the order of addition of both ions to C-coated goethite had only a minor effect on the intraparticle diffusion of phosphate. Micropore clogging and dissolution of microporous hydrous Fe and Al oxides may be regarded as potential strategies of plants to cope with phosphate deficiency in addition to ligand-exchange.
    Keywords: Geology
    ISSN: 0016-7037
    E-ISSN: 1872-9533
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Language: English
    In: Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, Vol.303(3), pp.249-252
    Description: Colloids play a crucial role in the translocation of trace elements in soils. Recent studies provided hints that colloid hydrophobicity may be an important factor controlling colloid (im)mobilization in soils. However, existing methods for the determination of hydrophobicity are limited to the bulk soil. Therefore, we developed a method to determine the hydrophobicity of suspended colloids in aqueous soil suspensions, which was based on a distribution between a polar and a non-polar phase. The proposed method uses 30 mg of an unpolar solid phase (C18-column material) which are mixed with 10 mL of suspension for 2 h. The turbidity of the suspensions is measured before and after mixing. The ratio of the colloids in the hydrophilic aqueous and the hydrophobic solid phase is calculated as a measure of colloid hydrophobicity. This method was successfully tested on differently hydrophobized goethite particles. At DOC concentrations exceeding 20 mg L , organic molecules sorbed to C18-material limit the applicability of the method.
    Keywords: Water Repellence ; Zeta Potential ; Colloid ; Soil Drying ; Engineering ; Chemistry
    ISSN: 0927-7757
    E-ISSN: 1873-4359
    Source: ScienceDirect Journals (Elsevier)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Language: English
    In: Journal of Plant Nutrition and Soil Science, April 2017, Vol.180(2), pp.220-230
    Description: Standard procedures to assess P availability in soils are based on batch experiments with various extractants. However, in most soils P nutrition is less limited by bulk stocks but by strong adsorption and transport limitation. The basic principle of root‐phosphate uptake is to strip phosphate locally from the solid phase by forming a radial depletion zone in the soil solution, optionally enhanced by release of mobilizing substances. Microdialysis (MD), a well‐established method in pharmacokinetics, is capable to mimic important characteristics of P root uptake. The sampling is by diffusional exchange through a semipermeable membrane covering the probes with their sub‐mm tubular structure. Additionally, the direct environment of the probe can be chemically modified by adding, ., carboxylates to the perfusate. This study is the first approach to test the applicability of MD in assessing plant available phosphate in soils and to develop a framework for its appropriate use.We used MD in stirred solutions to quantify the effect of pumping rate, concomitant ions, and pH value on phosphate recovery. Furthermore, we measured phosphate yield of top‐soil material from a beech forest, a non‐fertilized grassland, and from a fertilized corn field. Three perfusates have been used based on a 1 mM KNO solution: pure (1), with 0.1 mM citric acid (2), and with 1 mM citric acid (3). Additionally, a radial diffusion model has been parametrized for the stirred solutions and the beech forest soil.Results from the tests in stirred solutions were in good agreement with reported observations obtained for other ionic species. This shows the principal suitability of the experimental setup for phosphate tests. We observed a significant dependency of phosphate uptake into the MD probes on dialysate pumping rate and on ionic strength of the outside solution. In the soils, we observed uptake rates of the probes between 1.5 × 10 and 6.7 × 10 mol s cm in case of no citrate addition. Surprisingly, median uptake rates were mostly independent of the bulk soil stocks, but the P‐fertilized soil revealed a strong tailing towards higher values. This indicates the occurrence of hot P spots in soils. Citrate addition increased P yields only in the higher concentration but not in the forest soil. The order of magnitude of MD uptake rates from the soil samples matched root‐length related uptake rates from other studies. The micro‐radial citrate release in MD reflects the processes controlling phosphate mobilization in the rhizosphere better than measurements based on “flooding” of soil samples with citric acid in batch experiments. Important challenges in MD with phosphate are small volumes of dialysate with extremely low concentrations and a high variability of results due to soil heterogeneity and between‐probe variability. We conclude that MD is a promising tool to complement existing P‐analytical procedures, especially when spatial aspects or the release of mobilizing substances are in focus.
    Keywords: Plant Availability ; Diffusion Limitation ; Spatial Heterogeneity ; Carboxylates
    ISSN: 1436-8730
    E-ISSN: 1522-2624
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    In: Eastern European Countryside, 12/1/2013, Vol.19(1), pp.153-176
    Description: Regional agro-food networks have an impact on the development of rural regions. Networks give small and medium sized enterprises the opportunity to gain access to further markets (e.g. through offering a wider common product range), to conduct more effective marketing or to synergize the variety of skills and knowhow of the network partners. Networks of the agricultural and food economy are also seen as a chance for rural regions because they can positively influence social and cultural lives as well as the natural and economic areas in regions. We analysed regional networks of the agricultural and food economy, investigated the strengths and weaknesses in the structure of agro-food networks and developed options for action to strengthen the collaboration within the networks and their regional marketing. In our paper we present the results of one case study in Eastern Germany. We show our findings of a strengths and weaknesses analysis and a constellation analysis. Therefore, success factors were identified and used to evaluate the networks qualitatively. In addition, we discuss how regional networks can support regional marketing and sustainable regional development.
    Keywords: Agronomy ; Marketing ; Sustainable Development ; Food;
    ISSN: 1232-8855
    E-ISSN: 21995877
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Language: English
    In: Geomorphology, 01 June 2014, Vol.214, pp.157-167
    Description: Sediment trapping and organic carbon (OC) accretion in soil are crucial ecosystem services of floodplain forests. However, interactions between the two processes have scarcely been analyzed at the ecosystem level. This study aimed at quantifying OC accretion parameters (CAP, including sedimentation rate, OC concentration, OC accretion) over roughly the last 50 years on both sides of a dike in a Danubian floodplain forest in Austria. Additionally, we determined soil OC stocks (0–100 cm in depth) and modeled both CAP and OC stocks in relation to environmental parameters. Overall, mean sedimentation rate and OC accretion of the riparian forest were 0.8 cm y and 3.3 t OC ha y and significantly higher in flooded riparian forest (FRF; 1.0 cm y and 4.1 t OC ha y ) than in diked riparian forest (DRF; 0.3 cm y and 1.5 t OC ha y ). In contrast, mean OC concentration (0.05 t OC m ) and OC stocks (238 t OC ha ) were significantly higher in the DRF than in FRF (0.05 vs. 0.04 t OC m and 286 vs. 201 t OC ha ). Modeling revealed tree species, fluctuation of groundwater table, and the distance to the river as valuable indicators for OC accretion rate. The OC concentration and distance to the river were positively and sedimentation negatively correlated with OC stock. The dike was consistently ruled out as a significant predictor variable. Consequently, differences among FRF and DRF seem to be related rather to longer term processes during the last centuries than directly to the dike. Our findings highlight the relevance of sediment quality (i.e., OC concentration) for building up long-term soil OC stocks, whereas sediment quantity is the main driver of recent OC accretion rates.
    Keywords: Carbon Accretion Rate ; Carbon Stock ; Dendrogeomorphology ; Dike ; Floodplain Forest ; Sedimentation Rate ; Geography ; Geology
    ISSN: 0169-555X
    E-ISSN: 1872-695X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Language: English
    In: Catena, April 2016, Vol.139, pp.9-18
    Description: Riparian woodlands consist of different landscape units characterized by different hydroecomorphological site conditions that are reflected in the distribution of soils and tree species. These conditions are determined by flooding frequency and duration, distance to river channels, elevation and water flow velocity. The influence of these environmental drivers on the stabilization of soil organic matter (SOM) has as yet not been investigated. Hence, the aim of our study is to link soil formation and its drivers with stabilizing processes of SOM in riparian floodplain forests. We investigated soils and sediments at two sites in the ash–maple–elm–oak alluvial forest zone (AMEO sites) and two sites in the willow-poplar alluvial forest zone (WiP sites) within the riparian zone of the Danube near Vienna (Austria). Sediments and soils were characterized based on texture, contents of organic carbon (OC), nitrogen, Fe oxides, and soil pH. Density fractionation was used to separate OC fractions in terms of stabilization process and resulting organic matter (OM) turnover time: the free light fraction (fast turnover), the light fraction occluded in aggregates (intermediate turnover) and the heavy fraction of OM associated tightly to mineral surfaces (slow turnover). At both sites, soil and sediment properties reflect the hydroecomorphological site conditions for formation of the landscape units in the riparian zone: Soils at AMEO sites develop during constant deposition of fine-textured sediment while water flow velocity is low. Progressing soil development causes a continuous decrease in OC content with increasing soil depth, mainly from fractions with fast and intermediate turnover. As a consequence the heavy fraction clearly dominates with around 90% of OC. Temporally variable flooding conditions with occurring turbulences found at WiP sites result in a discontinuous change of soil properties with increasing soil depth. Former topsoil horizons buried by huge amounts of sediments seem to keep the OC fractionation typical for topsoil horizons with extraordinarily high amounts of light fraction OM (free and occluded) representing 20–40% of total OC. The presented results confirm that sedimentation and soil formation are simultaneous processes at AMEO sites. At WiP sites both processes seem uncoupled with alternate phases of sedimentation and soil formation. Thus, the frequent burial of topsoil material formed at WiP sites seems to enable the conservation of unstable organic matter fractions at this part of active floodplains.
    Keywords: Fluvisol Formation ; Soil Organic Matter ; Density Fractionation ; Riparian Floodplains ; Soil Aggregates ; Riparian Forests ; Sciences (General) ; Geography ; Geology
    ISSN: 0341-8162
    E-ISSN: 1872-6887
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Language: English
    In: Plant and Soil, 2005, Vol.275(1), pp.vii-vii
    Description: Issue Title: Kinetics of soil physico - chemical processes
    Keywords: Life Sciences ; Plant Sciences ; Ecology ; Plant Physiology ; Soil Science & Conservation ; Agriculture ; Botany ; Ecology;
    ISSN: 0032-079X
    E-ISSN: 1573-5036
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages