Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Article  (598)
Type of Medium
  • Article  (598)
Language
Year
  • 11
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 23 November 2010, Vol.107(47), pp.20435-40
    Description: The abundant class of bacterial Hfq-associated small regulatory RNAs (sRNAs) parallels animal microRNAs in their ability to control multiple genes at the posttranscriptional level by short and imperfect base pairing. In contrast to the universal length and seed pairing mechanism of microRNAs, the sRNAs are heterogeneous in size and structure, and how they regulate multiple targets is not well understood. This paper provides evidence that a 5' located sRNA domain is a critical element for the control of a large posttranscriptional regulon. We show that the conserved 5' end of RybB sRNA recognizes multiple mRNAs of Salmonella outer membrane proteins by ≥7-bp Watson-Crick pairing. When fused to an unrelated sRNA, the 5' domain is sufficient to guide target mRNA degradation and maintain σ(E)-dependent envelope homeostasis. RybB sites in mRNAs are often conserved and flanked by 3' adenosine. They are found in a wide sequence window ranging from the upstream untranslated region to the deep coding sequence, indicating that some targets might be repressed at the level of translation, whereas others are repressed primarily by mRNA destabilization. Autonomous 5' domains seem more common in sRNAs than appreciated and might improve the design of synthetic RNA regulators.
    Keywords: Bacterial Outer Membrane Proteins -- Metabolism ; Gene Expression Regulation, Bacterial -- Genetics ; RNA, Messenger -- Metabolism ; Regulatory Sequences, Ribonucleic Acid -- Genetics ; Regulon -- Genetics ; Salmonella -- Genetics
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    In: Molecular Microbiology, December 2010, Vol.78(6), pp.1327-1331
    Description: Although most bacterial small RNAs act to repress target mRNAs, some also activate messengers. The predominant mode of activation has been seen in ‘anti‐antisense’ regulation whereby a small RNA prevents the formation of an inhibitory 5′ mRNA structure that otherwise impairs translational initiation and protein synthesis. The translational activation might also stabilize the target yet this was considered a secondary effect in the examples known thus far. Two recent papers in investigate post‐transcriptional activation of collagenase mRNA by VR‐RNA, and streptokinase mRNA by FasX RNA, to suggest that small RNAs exert positive regulation of virulence genes primarily at the level of mRNA stabilization.
    Keywords: Protein Synthesis ; Messenger Rna;
    ISSN: 0950-382X
    E-ISSN: 1365-2958
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Language: English
    In: PLoS ONE, 2011, Vol.6(3), p.e17296
    Description: P-bodies are dynamic aggregates of RNA and proteins involved in several post-transcriptional regulation processes. P-bodies have been shown to play important roles in regulating viral infection, whereas their interplay with bacterial pathogens, specifically intracellular bacteria that extensively manipulate host cell pathways, remains unknown. Here, we report that Salmonella infection induces P-body disassembly in a cell type-specific manner, and independently of previously characterized pathways such as inhibition of host cell RNA synthesis or microRNA-mediated gene silencing. We show that the Salmonella -induced P-body disassembly depends on the activation of the SPI-2 encoded type 3 secretion system, and that the secreted effector protein SpvB plays a major role in this process. P-body disruption is also induced by the related pathogen, Shigella flexneri , arguing that this might be a new mechanism by which intracellular bacterial pathogens subvert host cell function.
    Keywords: Research Article ; Biology ; Medicine ; Infectious Diseases ; Microbiology ; Molecular Biology ; Cell Biology
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 11 October 2016, Vol.113(41), pp.11591-11596
    Description: The functional annotation of transcriptomes and identification of noncoding RNA (ncRNA) classes has been greatly facilitated by the advent of next-generation RNA sequencing which, by reading the nucleotide order of transcripts, theoretically allows the rapid profiling of all transcripts in a cell. However, primary sequence per se is a poor predictor of function, as ncRNAs dramatically vary in length and structure and often lack identifiable motifs. Therefore, to visualize an informative RNA landscape of organisms with potentially new RNA biology that are emerging from microbiome and environmental studies requires the use of more functionally relevant criteria. One such criterion is the association of RNAs with functionally important cognate RNA-binding proteins. Here we analyze the full ensemble of cellular RNAs using gradient profiling by sequencing (Grad-seq) in the bacterial pathogen Salmonella enterica, partitioning its coding and noncoding transcripts based on their network of RNA-protein interactions. In addition to capturing established RNA classes based on their biochemical profiles, the Grad-seq approach enabled the discovery of an overlooked large collective of structured small RNAs that form stable complexes with the conserved protein ProQ. We show that ProQ is an abundant RNA-binding protein with a wide range of ligands and a global influence on Salmonella gene expression. Given its generic ability to chart a functional RNA landscape irrespective of transcript length and sequence diversity, Grad-seq promises to define functional RNA classes and major RNA-binding proteins in both model species and genetically intractable organisms.
    Keywords: Hfq ; Proq ; RNA–Protein Interaction ; Noncoding RNA ; Small RNA ; Bacterial Proteins -- Metabolism ; High-Throughput Nucleotide Sequencing -- Methods ; RNA, Bacterial -- Metabolism ; RNA-Binding Proteins -- Metabolism ; Salmonella Enterica -- Metabolism
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 01 February 2011, Vol.108(5), pp.2124-9
    Description: There has been an increasing interest in cyanobacteria because these photosynthetic organisms convert solar energy into biomass and because of their potential for the production of biofuels. However, the exploitation of cyanobacteria for bioengineering requires knowledge of their transcriptional organization. Using differential RNA sequencing, we have established a genome-wide map of 3,527 transcriptional start sites (TSS) of the model organism Synechocystis sp. PCC6803. One-third of all TSS were located upstream of an annotated gene; another third were on the reverse complementary strand of 866 genes, suggesting massive antisense transcription. Orphan TSS located in intergenic regions led us to predict 314 noncoding RNAs (ncRNAs). Complementary microarray-based RNA profiling verified a high number of noncoding transcripts and identified strong ncRNA regulations. Thus, ∼64% of all TSS give rise to antisense or ncRNAs in a genome that is to 87% protein coding. Our data enhance the information on promoters by a factor of 40, suggest the existence of additional small peptide-encoding mRNAs, and provide corrected 5' annotations for many genes of this cyanobacterium. The global TSS map will facilitate the use of Synechocystis sp. PCC6803 as a model organism for further research on photosynthesis and energy research.
    Keywords: Transcription, Genetic ; Synechocystis -- Genetics
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 10 September 2013, Vol.110(37), pp.E3487-96
    Description: Small RNAs (sRNAs) constitute a large and heterogeneous class of bacterial gene expression regulators. Much like eukaryotic microRNAs, these sRNAs typically target multiple mRNAs through short seed pairing, thereby acting as global posttranscriptional regulators. In some bacteria, evidence for hundreds to possibly more than 1,000 different sRNAs has been obtained by transcriptome sequencing. However, the experimental identification of possible targets and, therefore, their confirmation as functional regulators of gene expression has remained laborious. Here, we present a strategy that integrates phylogenetic information to predict sRNA targets at the genomic scale and reconstructs regulatory networks upon functional enrichment and network analysis (CopraRNA, for Comparative Prediction Algorithm for sRNA Targets). Furthermore, CopraRNA precisely predicts the sRNA domains for target recognition and interaction. When applied to several model sRNAs, CopraRNA revealed additional targets and functions for the sRNAs CyaR, FnrS, RybB, RyhB, SgrS, and Spot42. Moreover, the mRNAs gdhA, lrp, marA, nagZ, ptsI, sdhA, and yobF-cspC were suggested as regulatory hubs targeted by up to seven different sRNAs. The verification of many previously undetected targets by CopraRNA, even for extensively investigated sRNAs, demonstrates its advantages and shows that CopraRNA-based analyses can compete with experimental target prediction approaches. A Web interface allows high-confidence target prediction and efficient classification of bacterial sRNAs.
    Keywords: E. Coli ; RNA–RNA Interaction ; Regulatory RNA ; RNA, Bacterial -- Genetics
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Language: English
    In: Nucleic acids research, 07 January 2013, Vol.41(1), pp.542-53
    Description: Many microRNAs (miRNAs) are co-regulated during the same physiological process but the underlying cellular logic is often little understood. The conserved, immunomodulatory miRNAs miR-146 and miR-155, for instance, are co-induced in many cell types in response to microbial lipopolysaccharide (LPS) to feedback-repress LPS signalling through Toll-like receptor TLR4. Here, we report that these seemingly co-induced regulatory RNAs dramatically differ in their induction behaviour under various stimuli strengths and act non-redundantly through functional specialization; although miR-146 expression saturates at sub-inflammatory doses of LPS that do not trigger the messengers of inflammation markers, miR-155 remains tightly associated with the pro-inflammatory transcriptional programmes. Consequently, we found that both miRNAs control distinct mRNA target profiles; although miR-146 targets the messengers of LPS signal transduction components and thus downregulates cellular LPS sensitivity, miR-155 targets the mRNAs of genes pervasively involved in pro-inflammatory transcriptional programmes. Thus, miR-155 acts as a broad limiter of pro-inflammatory gene expression once the miR-146 dependent barrier to LPS triggered inflammation has been breached. Importantly, we also report alternative miR-155 activation by the sensing of bacterial peptidoglycan through cytoplasmic NOD-like receptor, NOD2. We predict that dose-dependent responses to environmental stimuli may involve functional specialization of seemingly co-induced miRNAs in other cellular circuitries as well.
    Keywords: Immunity, Innate -- Genetics ; Micrornas -- Metabolism
    ISSN: 03051048
    E-ISSN: 1362-4962
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Language: English
    In: Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 05 November 2016, Vol.371(1707)
    Description: Infection is a complicated balance, with both pathogen and host struggling to tilt the result in their favour. Bacterial infection biology has relied on forward genetics for many of its advances, defining phenotype in terms of replication in model systems. However, many known virulence factors fail to produce robust phenotypes, particularly in the systems most amenable to genetic manipulation, such as cell-culture models. This has particularly been limiting for the study of the bacterial regulatory small RNAs (sRNAs) in infection. We argue that new sequencing-based technologies can work around this problem by providing a 'molecular phenotype', defined in terms of the specific transcriptional dysregulation in the infection system induced by gene deletion. We illustrate this using the example of our recent study of the PinT sRNA using dual RNA-seq, that is, simultaneous RNA sequencing of host and pathogen during infection. We additionally discuss how other high-throughput technologies, in particular genetic interaction mapping using transposon insertion sequencing, may be used to further dissect molecular phenotypes. We propose a strategy for how high-throughput technologies can be integrated in the study of non-coding regulators as well as bacterial virulence factors, enhancing our ability to rapidly generate hypotheses with regards to their function.This article is part of the themed issue 'The new bacteriology'.
    Keywords: Pint ; Tn-Seq ; Dual RNA-Seq ; Host–Pathogen Interaction ; Infection ; Small Non-Coding RNA ; Chromosome Mapping -- Methods ; High-Throughput Nucleotide Sequencing -- Methods ; RNA, Bacterial -- Genetics ; RNA, Small Untranslated -- Genetics ; Sequence Analysis, RNA -- Methods
    ISSN: 09628436
    E-ISSN: 1471-2970
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Language: English
    In: Science (New York, N.Y.), 07 December 2018, Vol.362(6419), pp.1156-1160
    Description: Many bacterial infections are hard to treat and tend to relapse, possibly due to the presence of antibiotic-tolerant persisters. In vitro, persister cells appear to be dormant. After uptake of species by macrophages, nongrowing persisters also occur, but their physiological state is poorly understood. In this work, we show that persisters arising during macrophage infection maintain a metabolically active state. Persisters reprogram macrophages by means of effectors secreted by the pathogenicity island 2 type 3 secretion system. These effectors dampened proinflammatory innate immune responses and induced anti-inflammatory macrophage polarization. Such reprogramming allowed nongrowing cells to survive for extended periods in their host. Persisters undermining host immune defenses might confer an advantage to the pathogen during relapse once antibiotic pressure is relieved.
    Keywords: Drug Resistance, Bacterial ; Host-Pathogen Interactions -- Immunology ; Macrophages -- Immunology ; Salmonella Infections -- Drug Therapy ; Salmonella Typhimurium -- Metabolism ; Type III Secretion Systems -- Metabolism
    ISSN: 00368075
    E-ISSN: 1095-9203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Language: English
    In: PloS one, 2016, Vol.11(7), pp.e0159948
    Description: Matter turnover in soil is tightly linked to soil structure which governs the heterogeneous distribution of habitats, reaction sites and pathways in soil. Thereby, the temporal dynamics of soil structure alteration is deemed to be important for essential ecosystem functions of soil but very little is known about it. A major reason for this knowledge gap is the lack of methods to study soil structure turnover directly at microscopic scales. Here we devise a conceptual approach and an image processing workflow to study soil structure turnover by labeling some initial state of soil structure with small garnet particles and tracking their fate with X-ray microtomography. The particles adhere to aggregate boundaries at the beginning of the experiment but gradually change their position relative to the nearest pore as structure formation progresses and pores are destructed or newly formed. A new metric based on the contact distances between particles and pores is proposed that allows for a direct quantification of soil structure turnover rates. The methodology is tested for a case study about soil compaction of a silty loam soil during stepwise increase of bulk density (ρ = {1.1, 1.3, 1.5} g/cm3). We demonstrate that the analysis of mean contact distances provides genuinely new insights about changing diffusion pathways that cannot be inferred neither from conventional pore space attributes (porosity, mean pore size, pore connectivity) nor from deformation analysis with digital image correlation. This structure labeling approach to quantify soil structure turnover provides a direct analogy to stable isotope labeling for the analysis of matter turnover and can be readily combined with each other.
    Keywords: X-Ray Microtomography ; Soil -- Chemistry
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages