Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
Year
  • 11
    In: Monthly Notices of the Royal Astronomical Society, 2017, Vol. 470(4), pp.4720-4731
    Description: We present the E-field Parallel Imaging Calibration (EPICal) algorithm, which addresses the need for a fast calibration method for direct imaging radio astronomy correlators. Direct imaging involves a spatial fast Fourier transform of antenna signals, alleviating an $\mathcal {O}(N_{\mathrm{a}} ^2)$ computational bottleneck typical in radio correlators, and yielding a more gentle $\mathcal {O}(N_{\mathrm{g}} \log _2 N_{\mathrm{g}})$ scaling, where N a is the number of antennas in the array and N g is the number of gridpoints in the imaging analysis. This can save orders of magnitude in computation cost for next generation arrays consisting of hundreds or thousands of antennas. However, because antenna signals are mixed in the imaging correlator without creating visibilities, gain correction must be applied prior to imaging, rather than on visibilities post-correlation. We develop the EPICal algorithm to form gain solutions quickly and without ever forming visibilities. This method scales as the number of antennas, and produces results comparable to those from visibilities. We use simulations to demonstrate the EPICal technique and study the noise properties of our gain solutions, showing they are similar to visibility-based solutions in realistic situations. By applying EPICal to 2 s of Long Wavelength Array data, we achieve a 65 per cent dynamic range improvement compared to uncalibrated images, showing this algorithm is a promising solution for next generation instruments.
    Keywords: Instrumentation: Interferometers ; Techniques: Image Processing ; Techniques: Interferometric
    ISSN: 0035-8711
    E-ISSN: 1365-2966
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    In: Monthly Notices of the Royal Astronomical Society, 2017, Vol. 467(1), pp.715-730
    Description: Modern radio telescopes are favouring densely packed array layouts with large numbers of antennas ( N A ≳ 1000). Since the complexity of traditional correlators scales as $\mathcal {O}(N_{\rm A}^2)$ , there will be a steep cost for realizing the full imaging potential of these powerful instruments. Through our generic and efficient E-field Parallel Imaging Correlator ( epic ), we present the first software demonstration of a generalized direct imaging algorithm, namely the Modular Optimal Frequency Fourier imager. Not only does it bring down the cost for dense layouts to $\mathcal {O}(N_{\rm A}\log _2N_{\rm A})$ but can also image from irregular layouts and heterogeneous arrays of antennas. epic is highly modular, parallelizable, implemented in object-oriented python , and publicly available. We have verified the images produced to be equivalent to those from traditional techniques to within a precision set by gridding coarseness. We have also validated our implementation on data observed with the Long Wavelength Array (LWA1). We provide a detailed framework for imaging with heterogeneous arrays and show that epic robustly estimates the input sky model for such arrays. Antenna layouts with dense filling factors consisting of a large number of antennas such as LWA, the Square Kilometre Array, Hydrogen Epoch of Reionization Array, and Canadian Hydrogen Intensity Mapping Experiment will gain significant computational advantage by deploying an optimized version of epic . The algorithm is a strong candidate for instruments targeting transient searches of fast radio bursts as well as planetary and exoplanetary phenomena due to the availability of high-speed calibrated time-domain images and low output bandwidth relative to visibility-based systems.
    Keywords: Instrumentation: Interferometers ; Techniques: Image Processing ; Techniques: Interferometric ; Telescopes
    ISSN: 0035-8711
    E-ISSN: 1365-2966
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Language: English
    In: IEEE Transactions on Microwave Theory and Techniques, August 2016, Vol.64(8), pp.2631-2639
    Description: This paper introduces a one-port method for estimating model parameters of vector network analyzer calibration standards. The method involves measuring the standards through an asymmetrical passive network connected in direct mode and then in reverse mode, and using these measurements to compute the S-parameters of the network. The free parameters of the calibration standards are estimated by minimizing a figure of merit based on the expected equality of the S-parameters of the network when used in direct and reverse modes. The capabilities of the method are demonstrated through simulations, and real measurements are used to estimate the actual offset delay of a 50-Ω calibration load that is assigned zero delay by the manufacturer. The estimated delay is 38.8 ps with a 1 σ uncertainty of 2.1 ps for this particular load. This result is verified through measurements of a terminated airline. The measurements agree better with theoretical models of the airline when the reference plane is calibrated using the new estimate for the load delay.
    Keywords: Standards ; Transmission Line Measurements ; Calibration ; Delays ; Scattering Parameters ; Ports (Computers) ; Extraterrestrial Measurements ; Delay ; Impedance ; Reflection Standards ; Scattering Parameters ; Vector Network Analyzer (Vna) ; Engineering
    ISSN: 0018-9480
    E-ISSN: 1557-9670
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Language: English
    In: Monthly Notices of the Royal Astronomical Society, 06/11/2018, Vol.477(1), pp.864-866
    Keywords: Meteorology & Climatology ; Astronomy & Astrophysics;
    ISSN: 0035-8711
    E-ISSN: 1365-2966
    Source: Oxford University Press (via CrossRef)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    In: Monthly Notices of the Royal Astronomical Society, 2012, Vol. 419(2), pp.1070-1084
    Description: Efforts are being made to observe the 21-cm signal from the ‘cosmic dawn’ using sky-averaged observations with individual radio dipoles. In this paper, we develop a model of the observations accounting for the 21-cm signal, foregrounds and several major instrumental effects. Given this model, we apply Markov Chain Monte Carlo techniques to demonstrate the ability of these instruments to separate the 21-cm signal from foregrounds and quantify their ability to constrain properties of the first galaxies. For concreteness, we investigate observations between 40 and 120 MHz with the proposed  Dark Ages Radio Explorer  mission in lunar orbit, showing its potential for science return.
    Keywords: Methods: Statistical ; Cosmology: Theory ; Diffuse Radiation ; Radio Lines: General
    ISSN: 0035-8711
    E-ISSN: 1365-2966
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    In: Monthly Notices of the Royal Astronomical Society, 2017, Vol. 474(4), pp.4487-4499
    Description: We present a baseline sensitivity analysis of the Hydrogen Epoch of Reionization Array (HERA) and its build-out stages to one-point statistics (variance, skewness, and kurtosis) of redshifted 21 cm intensity fluctuation from the Epoch of Reionization (EoR) based on realistic mock observations. By developing a full-sky 21 cm light-cone model, taking into account the proper field of view and frequency bandwidth, utilizing a realistic measurement scheme, and assuming perfect foreground removal, we show that HERA will be able to recover statistics of the sky model with high sensitivity by averaging over measurements from multiple fields. All build-out stages will be able to detect variance, while skewness and kurtosis should be detectable for HERA128 and larger. We identify sample variance as the limiting constraint of the measurements at the end of reionization. The sensitivity can also be further improved by performing frequency windowing. In addition, we find that strong sample variance fluctuation in the kurtosis measured from an individual field of observation indicates the presence of outlying cold or hot regions in the underlying fluctuations, a feature that can potentially be used as an EoR bubble indicator.
    Keywords: Methods: Statistical ; Dark Ages, Reionization, First Stars ; Cosmology: Observations
    ISSN: 0035-8711
    E-ISSN: 1365-2966
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Description: Changes in the sky noise spectrum are used to characterize perturbations in the ionosphere. Observations were made at the same sidereal time on multiple days using a calibrated broadband dipole and radio spectrometer covering 80 to 185 MHz. In this frequency range, an ionospheric opacity perturbation changes both the electron thermal emission from the ionosphere and the absorption of the sky noise background. For the first time, these changes are confirmed to have the expected spectral signature and are used to derive the opacity and electron temperature associated with the perturbations as a function of local time. The observations were acquired at the Murchison Radio-astronomy Observatory in Western Australia from 18 April 2014 to 6 May 2014. They show perturbations that increase at sunrise, continue during the day, and decline after sunset. Magnitudes corresponding to an opacity of about 1 percent at 150 MHz with a typical electron temperature of about 800 K, were measured for the strongest perturbations. Comment: 11 pages including 6 figures. Submitted to Radio Science
    Keywords: Astrophysics - Instrumentation And Methods For Astrophysics
    ISSN: 00486604
    E-ISSN: 1944799X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Language: English
    In: The Astrophysical Journal, 2017, Vol.835(1), p.49 (13pp)
    Description: The EDGES High-Band experiment aims to detect the sky-average brightness temperature of the 21 cm signal from the epoch of reionization in the redshift range . To probe this redshifted signal, EDGES High-Band conducts single-antenna measurements in the frequency range 90–190 MHz from the Murchison Radio-astronomy Observatory in Western Australia. In this paper, we describe the current strategy for calibration of the EDGES High-Band receiver and report calibration results for the instrument used in the 2015–2016 observational campaign. We propagate uncertainties in the receiver calibration measurements to the antenna temperature using a Monte Carlo approach. We define a performance objective of 1 mK residual rms after modeling foreground subtraction from a fiducial temperature spectrum using a five-term polynomial. Most of the calibration uncertainties yield residuals of 1 mK or less at confidence. However, current uncertainties in the antenna and receiver reflection coefficients can lead to residuals of up to 20 mK even in low-foreground sky regions. These dominant residuals could be reduced by (1) improving the accuracy in reflection measurements, especially their phase, (2) improving the impedance match at the antenna-receiver interface, and (3) decreasing the changes with frequency of the antenna reflection phase.
    Keywords: Astrophysics - Instrumentation And Methods For Astrophysics ; Astrophysics - Cosmology And Nongalactic Astrophysics;
    ISSN: 0004-637X
    E-ISSN: 1538-4357
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Description: We study the impact of instrumental systematics on the variance, skewness, and kurtosis of redshifted 21 cm intensity fluctuation observations from the Epoch of Reionization. We simulate realistic 21 cm observations based on the Murchison Widefield Array (MWA) Phase I reionization experiment, using the array's point spread function (PSF) and antenna beam patterns, full-sky 21 cm models, and the FHD imaging pipeline. We measure the observed redshift evolution of pixel probability density functions (PDF) and one-point statistics from the simulated maps, comparing them to the measurements derived from simpler simulations that represent the instrument PSFs with Gaussian kernels. We find that both methods yield statistics with similar trends with greater than 80% correlation. We perform additional simulations based on the Hydrogen Epoch of Reionization Array (HERA), using Gaussian kernels as the instrument PSFs, and study the effect of frequency binning on the statistics. We find that PSF smoothing and sampling variance from measuring the statistics over limited field of view dilute intrinsic features and add fluctuations to the statistics but reveal new detectable features. Observed kurtosis will increase when a few extremely high or low temperature regions are present in the maps. Frequency binning reduces the thermal uncertainty but can also blur regions along the frequency dimension, resulting in kurtosis peaks that only appear in statistics derived from maps of certain frequency bins. We further find that the kurtosis peaks will reach their maxima when the angular resolution of the PSFs match the size scale of the extreme regions that produce the peaks. The HERA array should be capable of charting the evolution of the observed skewness and kurtosis of the 21 cm fluctuations with high sensitivity while the MWA Phase I will likely be capable of detecting the peak in variance. Comment: 14 pages, 12 figures, submitted to ApJ
    Keywords: Astrophysics - Cosmology And Nongalactic Astrophysics
    Source: Cornell University
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Description: We report absolutely calibrated measurements of diffuse radio emission between 90 and 190 MHz from the Experiment to Detect the Global EoR Signature (EDGES). EDGES employs a wide beam zenith-pointing dipole antenna centred on a declination of -26.7$^\circ$. We measure the sky brightness temperature as a function of frequency averaged over the EDGES beam from 211 nights of data acquired from July 2015 to March 2016. We derive the spectral index, $\beta$, as a function of local sidereal time (LST) and find -2.60 〉 $\beta$ 〉 -2.62 $\pm$0.02 between 0 and 12 h LST. When the Galactic Centre is in the sky, the spectral index flattens, reaching $\beta$ = -2.50 $\pm$0.02 at 17.7 h. The EDGES instrument is shown to be very stable throughout the observations with night-to-night reproducibility of $\sigma_{\beta}$ 〈 0.003. Including systematic uncertainty, the overall uncertainty of $\beta$ is 0.02 across all LST bins. These results improve on the earlier findings of Rogers & Bowman (2008) by reducing the spectral index uncertainty from 0.10 to 0.02 while considering more extensive sources of errors. We compare our measurements with spectral index simulations derived from the Global Sky Model (GSM) of de Oliveira-Costa et al. (2008) and with fits between the Guzm\'an et al. (2011) 45 MHz and Haslam et al. (1982) 408 MHz maps. We find good agreement at the transit of the Galactic Centre. Away from transit, the GSM tends to over-predict (GSM less negative) by 0.05 〈 $\Delta_{\beta} = \beta_{\text{GSM}}-\beta_{\text{EDGES}}$ 〈 0.12, while the 45-408 MHz fits tend to over-predict by $\Delta_{\beta}$ 〈 0.05.
    Keywords: Astrophysics - Instrumentation And Methods For Astrophysics ; Astrophysics - Astrophysics Of Galaxies
    ISSN: 00358711
    E-ISSN: 13652966
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages