Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 11
    In: BMC Pharmacology, 2010, Vol.10(Suppl 1), p.A42-A42
    Description: The phosphatidyl inositol 3-kinase/mammalian target of rapamycin (PI3K/mTOR) pathway has been shown to be involved in the development of melanoma. PI-103 is a novel kinase inhibitor blocking PI3K class IA and mTOR complex 1 and 2. Here, we studied the effect of targeting the PI3K/mTORC1/mTORC2 pathway by PI-103 and rapamycin in melanoma cells and a melanoma mouse model.
    Keywords: Meeting Abstract
    E-ISSN: 1471-2210
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
  • 13
    Language: English
    In: Clinical cancer research : an official journal of the American Association for Cancer Research, 15 August 2011, Vol.17(16), pp.5322-32
    Description: In this study, we tested the antitumor activity of the dual phosphoinositide 3-kinase (PI3K)/mTOR inhibitor BEZ235 against gastric cancer in vitro and in vivo. Gastric cancer cell lines (N87, MKN45, and MKN28) were incubated with BEZ235 and assessed for cell viability, cell cycle, and PI3K/mTOR target inhibition. In vivo, athymic nude mice were inoculated with N87, MKN28, or MKN45 cells and treated daily with BEZ235. 3'-Deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT) uptake was measured via small animal positron emission tomography (PET). In vitro, BEZ235 dose dependently decreased the cell viability of gastric cancer cell lines. The antiproliferative activity of BEZ235 was linked to a G(1) cell-cycle arrest. In vivo, BEZ235 treatment resulted in PI3K/mTOR target inhibition as shown by dephosphorylation of AKT and S6 protein in all xenograft models. However, BEZ235 treatment only inhibited tumor growth of N87 xenografts, whereas no antitumor effect was observed in the MKN28 and MKN45 xenograft models. Sensitivity to BEZ235 in vivo correlated with downregulation of the proliferation marker thymidine kinase 1. Accordingly, [(18)F]FLT uptake was only significantly reduced in the BEZ235-sensitive N87 xenograft model as measured by PET. In conclusion, in vivo sensitivity of gastric cancer xenografts to BEZ235 did not correlate with in vitro antiproliferative activity or in vivo PI3K/mTOR target inhibition by BEZ235. In contrast, [(18)F]FLT uptake was linked to BEZ235 in vivo sensitivity. Noninvasive [(18)F]FLT PET imaging might qualify as a novel marker for optimizing future clinical testing of dual PI3K/mTOR inhibitors.
    Keywords: Xenograft Model Antitumor Assays ; Imidazoles -- Pharmacology ; Phosphatidylinositol 3-Kinases -- Antagonists & Inhibitors ; Quinolines -- Pharmacology ; Stomach Neoplasms -- Drug Therapy ; Tor Serine-Threonine Kinases -- Antagonists & Inhibitors
    ISSN: 1078-0432
    E-ISSN: 15573265
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Language: English
    In: Clinical cancer research : an official journal of the American Association for Cancer Research, 15 July 2018, Vol.24(14), pp.3253-3262
    Description: The PI3K/mTOR pathway is frequently aberrated in cancer. LY3023414 is a potent and selective ATP-competitive inhibitor of class I PI3K isoforms, mTOR, and DNA-PK. Here we report the dose-escalation results of the first-in-human phase I study of LY3023414. A 3+3 dose escalation for once-daily and twice-daily oral dosing of LY3023414 was followed by an expansion cohort for CYP3A4 drug-drug interaction (DDI) assessment. The primary objective was to determine the recommended phase 2 dose (RP2D). Additional objectives included safety, pharmacokinetics/pharmacodynamics, and antitumor activity. Forty-seven patients with solid tumors received LY3023414 at once-daily (20-450 mg) or twice-daily dosing (150-250 mg). Dose-limiting toxicities were observed at 450 mg once-daily (thrombocytopenia, hypotension, hyperkalemia) in three of three patients, 250-mg twice-daily dosing (hypophosphatemia, fatigue, mucositis) in three of four patients, and in one of 15 patients at 200 mg twice-daily (nausea). Common related AEs included nausea (38%), fatigue (34%), and vomiting (32%) and were mostly mild or moderate. LY3023414 pharmacokinetics demonstrated dose-dependent increase in exposure with ≥ 90% target inhibition at doses ≥150 mg. DDI analysis demonstrated LY3023414 to be a weak inhibitor of CYP3A4. Durable partial response was observed in a patient with endometrial cancer harboring PIK3R1 and PTEN truncating mutations, and 13 additional patients (28%) had a decrease in their target lesions by up to 30%. LY3023414 has a tolerable safety profile and single-agent activity in patients with advanced cancers. The RP2D of LY3023414 monotherapy is 200 mg twice daily based on safety, tolerability, and pharmacokinetic/pharmacodynamic data. .
    Keywords: Medicine;
    ISSN: 1078-0432
    E-ISSN: 15573265
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Language: English
    In: Clinical cancer research : an official journal of the American Association for Cancer Research, 15 April 2017, Vol.23(8), pp.1910-1919
    Description: The MET/HGF pathway regulates cell proliferation and survival and is dysregulated in multiple tumors. Emibetuzumab (LY2875358) is a bivalent antibody that inhibits HGF-dependent and HGF-independent MET signaling. Here, we report dose escalation results from the first-in-human phase I trial of emibetuzumab. The study comprised a 3+3 dose escalation for emibetuzumab monotherapy (Part A) and in combination with erlotinib (Part A2). Emibetuzumab was administered i.v. every 2 weeks (Q2W) using a flat dosing scheme. The primary objective was to determine a recommended phase II dose (RPTD) range; secondary endpoints included tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and antitumor activity. Twenty-three patients with solid tumors received emibetuzumab monotherapy at 20, 70, 210, 700, 1,400, and 2,000 mg and 14 non-small cell lung cancer (NSCLC) patients at 700, 1,400, and 2,000 mg in combination with erlotinib 150 mg daily. No dose-limiting toxicities and related serious or ≥ grade 3 adverse events were observed. The most common emibetuzumab-related adverse events included mild diarrhea, nausea, and vomiting, and mild to moderate fatigue, anorexia, and hypocalcemia in combination with erlotinib. Emibetuzumab showed linear PK at doses 〉210 mg. Three durable partial responses were observed, one for emibetuzumab (700 mg) and two for emibetuzumab + erlotinib (700 mg and 2,000 mg). Both of the responders to emibetuzumab + erlotinib had progressed to prior erlotinib and were positive for MET protein tumor expression. Based on tolerability, PK/PD analysis, and preliminary clinical activity, the RPTD range for emibetuzumab single agent and in combination with erlotinib is 700 to 2,000 mg i.v. Q2W. .
    Keywords: Antibodies, Monoclonal, Humanized -- Administration & Dosage ; Antineoplastic Agents -- Administration & Dosage ; Erlotinib Hydrochloride -- Administration & Dosage ; Neoplasms -- Drug Therapy
    ISSN: 1078-0432
    E-ISSN: 15573265
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Language: English
    In: The Journal of infectious diseases, 01 February 2010, Vol.201(3), pp.354-62
    Description: BACKGROUND. The nonstructural protein NS1 of influenza virus counteracts the interferon-mediated immune response of the host. By deleting the open reading frame of NS1, we have generated a novel type of influenza vaccine. We studied the safety and immunogenicity of an influenza strain lacking the NS1 gene (DeltaNS1-H1N1) in healthy volunteers. METHODS. Healthy seronegative adult volunteers were randomized to receive either a single intranasal dose of the DeltaNS1-H1N1 A/New Caledonia vaccine at 1 of 5 dose levels (6.4, 6.7, 7.0, 7.4, and 7.7 log(10) median tissue culture infective dose) (n = 36 recipients) or placebo (n = 12 recipients). RESULTS. Intranasal vaccination with the replication-deficient DeltaNS1-H1N1 vaccine was well tolerated. Rhinitis-like symptoms and headache were the most common adverse events identified during the 28-day observation period. Adverse events were similarly distributed between the treatment and placebo groups. Vaccine-specific local and serum antibodies were induced in a dose-dependent manner. In the highest dose group, vaccine-specific antibodies were detected in 10 of 12 volunteers. Importantly, the vaccine also induced neutralizing antibodies against heterologous drift variants. CONCLUSIONS. We show that vaccination with an influenza virus strain lacking the viral interferon antagonist NS1 induces statistically significant levels of strain-specific and cross-neutralizing antibodies despite the highly attenuated replication-deficient phenotype. Further studies are warranted to determine whether these results translate into protection from influenza virus infection. TRIAL REGISTRATION. ClinicalTrials.gov identifier: NCT00724997 .
    Keywords: Influenza A Virus, H1n1 Subtype -- Immunology ; Influenza Vaccines -- Immunology ; Influenza, Human -- Prevention & Control ; Vaccines, Attenuated -- Immunology ; Viral Nonstructural Proteins -- Genetics
    ISSN: 00221899
    E-ISSN: 1537-6613
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
  • 18
    In: Journal of Investigative Dermatology, 2010, Vol.131(2), p.495
    Description: The phosphatidyl inositol 3-kinase/mammalian target of rapamycin (PI3K/mTOR) pathway has been shown to be involved in the development of melanoma. PI-103 is a kinase inhibitor blocking PI3K class IA and mTOR complex 1 and 2. Here, we studied the effect of targeting the PI3K/mTORC1/mTORC2 pathway by PI-103 and rapamycin in melanoma cells and in a melanoma mouse model. Dual targeting of PI3K and mTOR by PI-103 induced apoptosis and cell-cycle arrest, and inhibited viability of melanoma cells in vitro. Combined treatment with PI-103 and the prototypic mTORC1 inhibitor rapamycin led to the synergistic suppression of AKT and ribosomal S6 protein phosphorylation and to the induction of apoptosis. In vivo, PI-103 and rapamycin displayed only modest single-agent activity, but the combination significantly reduced the tumor growth compared with both single agents. These data show that blocking the PI3K/mTORC1/mTORC2 pathway using the combination of two distinct small-molecule inhibitors ("vertical inhibition") leads to superior efficacy against malignant melanoma in vitro and in vivo.
    Keywords: Animals–Pharmacology ; Antibiotics, Antineoplastic–Drug Effects ; Apoptosis–Physiology ; Apoptosis–Drug Effects ; Cell Cycle–Physiology ; Cell Cycle–Drug Effects ; Cell Line, Tumor–Drug Effects ; Cell Proliferation–Physiology ; Cell Survival–Pharmacology ; Cell Survival–Pharmacology ; Disease Models, Animal–Metabolism ; Enzyme Inhibitors–Pathology ; Female–Physiopathology ; Furans–Antagonists & Inhibitors ; Humans–Metabolism ; Melanoma–Antagonists & Inhibitors ; Melanoma–Metabolism ; Melanoma–Pharmacology ; Mice–Pharmacology ; Mice, Nude–Drug Effects ; Multiprotein Complexes–Physiology ; Phosphatidylinositol 3-Kinases–Pharmacology ; Phosphatidylinositol 3-Kinases–Metabolism ; Proteins–Pathology ; Proteins–Physiopathology ; Pyridines–Antagonists & Inhibitors ; Pyrimidines–Metabolism ; Signal Transduction–Metabolism ; Signal Transduction–Metabolism ; Sirolimus–Metabolism ; Skin Neoplasms–Metabolism ; Skin Neoplasms–Metabolism ; Skin Neoplasms–Metabolism ; Tor Serine-Threonine Kinases–Metabolism ; Trans-Activators–Metabolism ; Trans-Activators–Metabolism ; Transcription Factors–Metabolism ; Transplantation, Heterologous–Metabolism ; Antibiotics, Antineoplastic ; Crtc2 Protein, Mouse ; Enzyme Inhibitors ; Furans ; Multiprotein Complexes ; Pi103 ; Proteins ; Pyridines ; Pyrimidines ; Trans-Activators ; Transcription Factors ; Mechanistic Target of Rapamycin Complex 1 ; Phosphatidylinositol 3-Kinases ; Tor Serine-Threonine Kinases ; Sirolimus;
    ISSN: 0022-202X
    E-ISSN: 15231747
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Language: English
    In: Journal of Clinical Oncology, 02/2016, Vol.34(4_suppl), pp.300-300
    ISSN: 0732-183X
    E-ISSN: 1527-7755
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Language: English
    In: Journal of Clinical Oncology, 05/20/2018, Vol.36(15_suppl), pp.e23535-e23535
    ISSN: 0732-183X
    E-ISSN: 1527-7755
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages