Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Forest Ecology and Management, 15 November 2015, Vol.356, pp.136-143
    Description: Phosphorus is an essential yet scarce macronutrient, and as such forest nutrition often relies on cycling of P between biomass and soils through litterfall and roots. For technical and soil protection reasons, modern harvesting systems create thick brash mats on skid trails by depositing residues, thus concentrating P there. What portion of this redistributed P is immobilized, lost, or recycled could be significant to forest nutrition and management. However, open questions exist regarding the quantity and fate of P deposited on skid trials. The aim of this study was to determine how much P is redistributed to skid trails and what happens to that P. We modeled the amount of P deposited on a skid trail during a whole-tree thinning of an Mill. stand, and quantified P stocks in the forest floor and mineral soil five years after the operation. An estimated 60% of harvested P from the encatchment was deposited on the skid trail. Five years after the harvest, forest floor P stocks in the skid trail dropped from an extrapolated 8.9 to 4.4 g m . The difference of 4.5 g m of P was not evident in mineral soil stocks, and loss through runoff or leaching would be minimal. With the greatest concentration of roots in the forest floor on the middle of the skid trail, mineralization and uptake of the missing P was the most likely explanation. This suggests that accumulated P on skid trails can be recycled through uptake by trees. Further testing in other stands and on which vegetation takes up accumulated P is still needed.
    Keywords: Nutrient Cycling ; Plant Uptake ; Whole-Tree Harvesting ; Brash Mats ; Allometric Modeling ; Forestry ; Biology
    ISSN: 0378-1127
    E-ISSN: 1872-7042
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Journal of Plant Nutrition and Soil Science, April 2017, Vol.180(2), pp.220-230
    Description: Standard procedures to assess P availability in soils are based on batch experiments with various extractants. However, in most soils P nutrition is less limited by bulk stocks but by strong adsorption and transport limitation. The basic principle of root‐phosphate uptake is to strip phosphate locally from the solid phase by forming a radial depletion zone in the soil solution, optionally enhanced by release of mobilizing substances. Microdialysis (MD), a well‐established method in pharmacokinetics, is capable to mimic important characteristics of P root uptake. The sampling is by diffusional exchange through a semipermeable membrane covering the probes with their sub‐mm tubular structure. Additionally, the direct environment of the probe can be chemically modified by adding, ., carboxylates to the perfusate. This study is the first approach to test the applicability of MD in assessing plant available phosphate in soils and to develop a framework for its appropriate use.We used MD in stirred solutions to quantify the effect of pumping rate, concomitant ions, and pH value on phosphate recovery. Furthermore, we measured phosphate yield of top‐soil material from a beech forest, a non‐fertilized grassland, and from a fertilized corn field. Three perfusates have been used based on a 1 mM KNO solution: pure (1), with 0.1 mM citric acid (2), and with 1 mM citric acid (3). Additionally, a radial diffusion model has been parametrized for the stirred solutions and the beech forest soil.Results from the tests in stirred solutions were in good agreement with reported observations obtained for other ionic species. This shows the principal suitability of the experimental setup for phosphate tests. We observed a significant dependency of phosphate uptake into the MD probes on dialysate pumping rate and on ionic strength of the outside solution. In the soils, we observed uptake rates of the probes between 1.5 × 10 and 6.7 × 10 mol s cm in case of no citrate addition. Surprisingly, median uptake rates were mostly independent of the bulk soil stocks, but the P‐fertilized soil revealed a strong tailing towards higher values. This indicates the occurrence of hot P spots in soils. Citrate addition increased P yields only in the higher concentration but not in the forest soil. The order of magnitude of MD uptake rates from the soil samples matched root‐length related uptake rates from other studies. The micro‐radial citrate release in MD reflects the processes controlling phosphate mobilization in the rhizosphere better than measurements based on “flooding” of soil samples with citric acid in batch experiments. Important challenges in MD with phosphate are small volumes of dialysate with extremely low concentrations and a high variability of results due to soil heterogeneity and between‐probe variability. We conclude that MD is a promising tool to complement existing P‐analytical procedures, especially when spatial aspects or the release of mobilizing substances are in focus.
    Keywords: Plant Availability ; Diffusion Limitation ; Spatial Heterogeneity ; Carboxylates
    ISSN: 1436-8730
    E-ISSN: 1522-2624
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Journal of Plant Nutrition and Soil Science, April 2016, Vol.179(2), pp.129-135
    Description: Phosphorus is one of the major limiting factors of primary productivity in terrestrial ecosystems and, thus, the P demand of plants might be among the most important drivers of soil and ecosystem development. The P cycling in forest ecosystems seems an ideal example to illustrate the concept of ecosystem nutrition. Ecosystem nutrition combines and extents the traditional concepts of nutrient cycling and ecosystem ecology. The major extension is to consider also the loading and unloading of nutrient cycles and the impact of nutrient acquiring and recycling processes on overall ecosystem properties. Ecosystem nutrition aims to integrate nutrient related aspects at different scales and in different ecosystem compartments including all processes, interactions and feedbacks associated with the nutrition of an ecosystem. We review numerous previous studies dealing with P nutrition from this ecosystem nutrition perspective. The available information contributes to the description of basic ecosystem characteristics such as emergence, hierarchy, and robustness. In result, we were able to refine Odum's hypothesis on P nutrition strategies along ecosystem succession to substrate related ecosystem nutrition and development. We hypothesize that at sites rich in mineral‐bound P, plant and microbial communities tend to introduce P from primary minerals into the biogeochemical P cycle (acquiring systems), and hence the tightness of the P cycle is of minor relevance for ecosystem functioning. In contrast, tight P recycling is a crucial emergent property of forest ecosystems established at sites poor in mineral bound P (recycling systems). We conclude that the integration of knowledge on nutrient cycling, soil science, and ecosystem ecology into holistic ecosystem nutrition will provide an entirely new view on soil–plant–microbe interactions.
    Keywords: Ecosystem Properties ; P Recycling ; P Nutrition Strategy ; Forest Nutrition ; P Acquiring
    ISSN: 1436-8730
    E-ISSN: 1522-2624
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Plant and Soil, 2018, Vol.432(1), pp.289-301
    Description: The accumulation of organic layers in forests is linked to decreasing nutrient availability. Organic layers might represent a source of phosphorus (P) nutrition of trees in forests. Our aims were i) to test if the fate of P in a tree sapling-soil system differs between nutrient-poor and nutrient-rich sites, and ii) to assess the influence of organic layers on the fate of P in a tree sapling-soil system at either site.We conducted a 33P labeling experiment of mesocosms of beech (Fagus sylvatica) saplings.Recovery of 33P in the organic layer was greater under nutrient-poor than under nutrient-rich conditions likely caused by the abundance of microorganisms and roots. Under nutrient-poor conditions, we found that the mobilization of P followed by efficient uptake promoted tree sapling growth if the organic layer was present. The presence of organic layers did not significantly influence P uptake by beech saplings under nutrient-rich conditions suggesting mechanisms of P mobilization in addition to organic matter mineralization.Our results highlight the importance of organic layers for P nutrition of young beech trees growing on nutrient-poor soils in temperate forest ecosystems. The role of organic layers should be considered for sustainable forest management.
    Keywords: P tracer ; Phosphorus nutrition ; Forest floor ; Soil ; Beech ; Phosphorus uptake
    ISSN: 0032-079X
    E-ISSN: 1573-5036
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Journal of Plant Nutrition and Soil Science, August 2016, Vol.179(4), pp.425-438
    Description: Understanding and quantification of phosphorus (P) fluxes are key requirements for predictions of future forest ecosystems changes as well as for transferring lessons learned from natural ecosystems to croplands and plantations. This review summarizes and evaluates the recent knowledge on mechanisms, magnitude, and relevance by which dissolved and colloidal inorganic and organic P forms can be translocated within or exported from forest ecosystems. Attention is paid to hydrological pathways of P losses at the soil profile and landscape scales, and the subsequent influence of P on aquatic ecosystems. New (unpublished) data from the German Priority Program 1685 “” were added to provide up‐to‐date flux‐based information. Nitrogen (N) additions increase the release of water‐transportable P forms. Most P found in percolates and pore waters belongs to the so‐called dissolved organic P (DOP) fractions, rich in orthophosphate‐monoesters and also containing some orthophosphate‐diesters. Total solution P concentrations range from ca. 1 to 400 µg P L, with large variations among forest stands. Recent sophisticated analyses revealed that large portions of the DOP in forest stream water can comprise natural nanoparticles and fine colloids which under extreme conditions may account for 40–100% of the P losses. Their translocation within preferential flow passes may be rapid, mediated by storm events. The potential total P loss through leaching into subsoils and with streams was found to be less than 50 mg P m a, suggesting effects on ecosystems at centennial to millennium scale. All current data are based on selected snapshots only. Quantitative measurements of P fluxes in temperate forest systems are nearly absent in the literature, probably due to main research focus on the C and N cycles. Therefore, we lack complete ecosystem‐based assessments of dissolved and colloidal P fluxes within and from temperate forest systems.
    Keywords: Forest Ecosystem ; Phosphorus ; Fluxes ; Soil ; Processes ; Hydrology
    ISSN: 1436-8730
    E-ISSN: 1522-2624
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages