Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PLoS Genetics
  • 1
    Language: English
    In: PLoS genetics, April 2017, Vol.13(4), pp.e1006725
    Description: [This corrects the article DOI: 10.1371/journal.pgen.1005975.].
    Keywords: Biology;
    E-ISSN: 1553-7404
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: PLoS Genetics, 2012, Vol.8(6), p.e1002782
    Description: RNA turnover plays an important role in both virulence and adaptation to stress in the Gram-positive human pathogen Staphylococcus aureus . However, the molecular players and mechanisms involved in these processes are poorly understood. Here, we explored the functions of S. aureus endoribonuclease III (RNase III), a member of the ubiquitous family of double-strand-specific endoribonucleases. To define genomic transcripts that are bound and processed by RNase III, we performed deep sequencing on cDNA libraries generated from RNAs that were co-immunoprecipitated with wild-type RNase III or two different cleavage-defective mutant variants in vivo . Several newly identified RNase III targets were validated by independent experimental methods. We identified various classes of structured RNAs as RNase III substrates and demonstrated that this enzyme is involved in the maturation of rRNAs and tRNAs, regulates the turnover of mRNAs and non-coding RNAs, and autoregulates its synthesis by cleaving within the coding region of its own mRNA. Moreover, we identified a positive effect of RNase III on protein synthesis based on novel mechanisms. RNase III–mediated cleavage in the 5′ untranslated region (5′UTR) enhanced the stability and translation of cspA mRNA, which encodes the major cold-shock protein. Furthermore, RNase III cleaved overlapping 5′UTRs of divergently transcribed genes to generate leaderless mRNAs, which constitutes a novel way to co-regulate neighboring genes. In agreement with recent findings, low abundance antisense RNAs covering 44% of the annotated genes were captured by co-immunoprecipitation with RNase III mutant proteins. Thus, in addition to gene regulation, RNase III is associated with RNA quality control of pervasive transcription. Overall, this study illustrates the complexity of post-transcriptional regulation mediated by RNase III. ; Control of mRNA stability is crucial for bacteria to survive and rapidly adapt to environmental changes and stress conditions. The molecular players and the degradation pathways involved in these adaptive processes are poorly understood in . The universally conserved double-strand-specific endoribonuclease III (RNase III) in is known to repress the synthesis of several virulence factors and was recently implicated in genome-wide mRNA processing mediated by antisense transcripts. We present here the first global map of direct RNase III targets in . Deep sequencing was used to identify RNAs associated with epitope-tagged wild-type RNase III and two catalytically impaired but binding-competent mutant proteins . Experimental validation revealed an unexpected variety of structured RNA transcripts as novel RNase III substrates. In addition to rRNA operon maturation, autoregulation, degradation of structured RNAs, and antisense regulation, we propose novel mechanisms by which RNase III increases mRNA translation. Overall, this study shows that RNase III has a broad function in gene regulation of . We can now address more specifically the roles of this universally conserved enzyme in gene regulation in response to stress and during host infection.
    Keywords: Research Article ; Biology ; Genetics And Genomics ; Microbiology
    ISSN: 1553-7390
    E-ISSN: 1553-7404
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: PLoS Genetics, 2016, Vol.12(4)
    Description: While an increasing number of conserved small regulatory RNAs (sRNAs) are known to function in general bacterial physiology, the roles and modes of action of sRNAs from horizontally acquired genomic regions remain little understood. The IsrK sRNA of Gifsy-1 prophage of Salmonella belongs to the latter class. This regulatory RNA exists in two isoforms. The first forms, when a portion of transcripts originating from isrK promoter reads-through the IsrK transcription-terminator producing a translationally inactive mRNA target. Acting in trans , the second isoform, short IsrK RNA, binds the inactive transcript rendering it translationally active. By switching on translation of the first isoform, short IsrK indirectly activates the production of AntQ, an antiterminator protein located upstream of isrK . Expression of antQ globally interferes with transcription termination resulting in bacterial growth arrest and ultimately cell death. Escherichia coli and Salmonella cells expressing AntQ display condensed chromatin morphology and localization of UvrD to the nucleoid. The toxic phenotype of AntQ can be rescued by co-expression of the transcription termination factor, Rho, or RNase H, which protects genomic DNA from breaks by resolving R-loops. We propose that AntQ causes conflicts between transcription and replication machineries and thus promotes DNA damage. The isrK locus represents a unique example of an island-encoded sRNA that exerts a highly complex regulatory mechanism to tune the expression of a toxic protein. Author Summary As the function of conserved core-genome-encoded small RNAs (sRNA) reflects the basic lifestyle of bacteria, the function of non-conserved island-encoded sRNAs remains enigmatic. The island-encoded sRNA IsrK belongs to Gifsy-1 prophage of Salmonella . Here, we report a complex mechanism in which the IsrK RNA functions as both sRNA and mRNA to control the production of the toxic AntQ protein. The isrK promoter directs the synthesis of two distinct RNA species: a full-length translationally inactive target mRNA and the correctly terminated, shorter IsrK sRNA. IsrK sRNA binds the full-length inactive mRNA producing an antiterminator protein, AntQ, which interferes with transcription termination. Expression of antQ results in bacterial growth arrest and ultimately cell death. Fluorescence microscopy of E . coli and Salmonella expressing antQ revealed condensed chromatin morphology as observed upon exposure to DNA-damaging agents. We propose that expression of the phage antiterminator protein results in conflicts between transcription and replication machineries and thus facilitates DNA damage. In summary, the RNA regulator IsrK presents a new regulatory principle in which a horizontally acquired sRNA controls genome integrity.
    Keywords: Research Article ; Biology And Life Sciences ; Biology And Life Sciences ; Medicine And Health Sciences ; Biology And Life Sciences ; Medicine And Health Sciences ; Biology And Life Sciences ; Biology And Life Sciences ; Biology And Life Sciences ; Research And Analysis Methods ; Biology And Life Sciences ; Biology And Life Sciences ; Research And Analysis Methods ; Research And Analysis Methods ; Biology And Life Sciences
    ISSN: 1553-7390
    E-ISSN: 1553-7404
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: https://doi.org/10.1371/journal.pgen.1007401
    Description: Invasion of epithelial cells by Salmonella enterica requires expression of genes located in the pathogenicity island I (SPI-1). The expression of SPI-1 genes is very tightly regulated and activated only under specific conditions. Most studies have focused on the regulatory pathways that induce SPI-1 expression. Here, we describe a new regulatory circuit involving CRP-cAMP, a widely established metabolic regulator, in silencing of SPI-1 genes under non-permissive conditions. In CRP-cAMP-deficient strains we detected a strong upregulation of SPI-1 genes in the mid-logarithmic growth phase. Genetic analyses revealed that CRP-cAMP modulates the level of HilD, the master regulator of Salmonella invasion. This regulation occurs at the post-transcriptional level and requires the presence of a newly identified regulatory motif within the hilD 3'UTR. We further demonstrate that in Salmonella the Hfq-dependent sRNA Spot 42 is under the transcriptional repression of CRP-cAMP and, when this transcriptional repression is relieved, Spot 42 exerts a positive effect on hilD expression. In vivo and in vitro assays indicate that Spot 42 targets, through its unstructured region III, the 3'UTR of the hilD transcript. Together, our results highlight the biological relevance of the hilD 3'UTR as a hub for post-transcriptional control of Salmonella invasion gene expression.
    Keywords: Salmonel·La ; Expressió Gènica ; Salmonella ; Gene Expression
    ISSN: 1553-7390
    Source: Universitat de Barcelona
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: PLoS Genetics, 2017, Vol.13(2)
    Description: The carbon storage regulator protein CsrA regulates cellular processes post-transcriptionally by binding to target-RNAs altering translation efficiency and/or their stability. Here we identified and analyzed the direct targets of CsrA in the human pathogen Legionella pneumophila . Genome wide transcriptome, proteome and RNA co-immunoprecipitation followed by deep sequencing of a wild type and a csrA mutant strain identified 479 RNAs with potential CsrA interaction sites located in the untranslated and/or coding regions of mRNAs or of known non-coding sRNAs. Further analyses revealed that CsrA exhibits a dual regulatory role in virulence as it affects the expression of the regulators FleQ, LqsR, LetE and RpoS but it also directly regulates the timely expression of over 40 Dot/Icm substrates. CsrA controls its own expression and the stringent response through a regulatory feedback loop as evidenced by its binding to RelA-mRNA and links it to quorum sensing and motility. CsrA is a central player in the carbon, amino acid, fatty acid metabolism and energy transfer and directly affects the biosynthesis of cofactors, vitamins and secondary metabolites. We describe the first L . pneumophila riboswitch, a thiamine pyrophosphate riboswitch whose regulatory impact is fine-tuned by CsrA, and identified a unique regulatory mode of CsrA, the active stabilization of RNA anti-terminator conformations inside a coding sequence preventing Rho-dependent termination of the gap operon through transcriptional polarity effects. This allows L . pneumophila to regulate the pentose phosphate pathway and the glycolysis combined or individually although they share genes in a single operon. Thus the L . pneumophila genome has evolved to acclimate at least five different modes of regulation by CsrA giving it a truly unique position in its life cycle. Author summary The RNA binding protein CsrA is the master regulator of the bi-phasic life cycle of Legionella pneumophila governing virulence expression in this intracellular pathogen. Here, we have used deep sequencing of RNA enriched by co-immunoprecipitation with epitope-tagged CsrA to identify CsrA-associated transcripts at the genome level. We found 479 mRNAs or non-coding RNAs to be targets of CsrA. Among those major regulators including FleQ, the regulator of flagella expression, LqsR, the regulator of quorum sensing and RpoS implicated in stress response were identified. The expression of over 40 type IV secreted effector proteins important for intracellular survival and virulence are under the control of CsrA. Combined with transcriptomics, whole shotgun proteomics of a wild type and a CsrA mutant strain and functional analyses of several CsrA-targeted RNAs we identified the first riboswitch in L . pneumophila , a thiamine pyrophosphate riboswitch, and discovered a new mode of regulation by CsrA that allows L . pneumophila to regulate the pentose phosphate pathway and the glycolysis combined or individually although they share genes in a single operon. Our results further underline the indispensable role of CsrA in the life cycle of L . pneumophila and provide new insights into its regulatory roles and mechanisms.
    Keywords: Research Article ; Biology And Life Sciences ; Biology And Life Sciences ; Medicine And Health Sciences ; Biology And Life Sciences ; Biology And Life Sciences ; Biology And Life Sciences ; Research And Analysis Methods ; Biology And Life Sciences ; Biology And Life Sciences ; Biology And Life Sciences ; Biology And Life Sciences ; Biology And Life Sciences
    ISSN: 1553-7390
    E-ISSN: 1553-7404
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: PLoS Genetics, 01 June 2018, Vol.14(6), p.e1007401
    Description: Invasion of epithelial cells by Salmonella enterica requires expression of genes located in the pathogenicity island I (SPI-1). The expression of SPI-1 genes is very tightly regulated and activated only under specific conditions. Most studies have focused on the regulatory pathways that induce...
    Keywords: Biology
    ISSN: 1553-7390
    E-ISSN: 1553-7404
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: PLoS Genetics, 2008, Vol.4(8), p.e1000163
    Description: Recent advances in high-throughput pyrosequencing (HTPS) technology now allow a thorough analysis of RNA bound to cellular proteins, and, therefore, of post-transcriptional regulons. We used HTPS to discover the Salmonella RNAs that are targeted by the common bacterial Sm-like protein, Hfq. Initial transcriptomic analysis revealed that Hfq controls the expression of almost a fifth of all Salmonella genes, including several horizontally acquired pathogenicity islands (SPI-1, -2, -4, -5), two sigma factor regulons, and the flagellar gene cascade. Subsequent HTPS analysis of 350,000 cDNAs, derived from RNA co-immunoprecipitation (coIP) with epitope-tagged Hfq or control coIP, identified 727 mRNAs that are Hfq-bound in vivo . The cDNA analysis discovered new, small noncoding RNAs (sRNAs) and more than doubled the number of sRNAs known to be expressed in Salmonella to 64; about half of these are associated with Hfq. Our analysis explained aspects of the pleiotropic effects of Hfq loss-of-function. Specifically, we found that the mRNAs of hilD (master regulator of the SPI-1 invasion genes) and flhDC (flagellar master regulator) were bound by Hfq. We predicted that defective SPI-1 secretion and flagellar phenotypes of the hfq mutant would be rescued by overexpression of HilD and FlhDC, and we proved this to be correct. The combination of epitope-tagging and HTPS of immunoprecipitated RNA detected the expression of many intergenic chromosomal regions of Salmonella . Our approach overcomes the limited availability of high-density microarrays that have impeded expression-based sRNA discovery in microorganisms. We present a generic strategy that is ideal for the systems-level analysis of the post-transcriptional regulons of RNA-binding proteins and for sRNA discovery in a wide range of bacteria. ; The past decade has seen small regulatory RNA become an important new mediator of bacterial mRNA regulation. This study describes a rapid way to identify novel sRNAs that are expressed, and should prove relevant to a variety of bacteria. We purified the epitope-tagged RNA-binding protein, Hfq, and its bound RNA by immunoprecipitation from the model pathogen, serovar Typhimurium. This new strategy used Next Generation pyrosequencing to identify 727 Hfq-bound mRNAs. The numbers of sRNAs expressed in was doubled to 64; half are associated with Hfq. We defined the exact coordinates of sRNAs, and confirmed that they are expressed at significant levels. We also determined the Hfq regulon in , and reported the role of Hfq in controlling transcription of major pathogenicity islands, horizontally acquired regions, and the flagellar cascade. Hfq is reported to be a global regulator that affects the expression of almost a fifth of all genes. Our new approach will allow sRNAs and mRNAs to be characterized from different genetic backgrounds, or from bacteria grown under particular environmental conditions. It will be valuable to scientists working on genetically tractable bacteria who are interested in the function of RNA-binding proteins and the identification of sRNAs.
    Keywords: Research Article ; Biochemistry -- Bioinformatics ; Genetics And Genomics -- Functional Genomics ; Genetics And Genomics -- Gene Expression ; Microbiology ; Microbiology -- Microbial Evolution And Genomics
    ISSN: 1553-7390
    E-ISSN: 1553-7404
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages