Kooperativer Bibliotheksverbund

Berlin Brandenburg

Your search history is empty.
and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Journal of Plant Nutrition and Soil Science, December 2018, Vol.181(6), pp.894-904
    Description: Sonication is widely used for disruption of suspended soil aggregates. Calorimetric calibration allows for determining sonication power and applied energy as a measure for aggregate disrupting forces. Yet other properties of sonication devices (., oscillation frequency and amplitude, sonotrode diameter) as well as procedure details (soil‐to‐water ratio, size, shape, and volume of used containers) may influence the extent of aggregate disruption in addition to the applied energy. In this study, we tested potential bias in aggregate disruption when different devices or procedures are used in laboratory routines. In nine laboratories, three reference soil samples were sonicated at 30 J mL and 400 J mL. Aggregate disruption was estimated based on particle size distribution before and after sonication. Size distribution was obtained by standardized submerged sieving for particle size classes 2000–200 and 200–63 µm, and by dynamic imaging for particles 45 W). Thus, these sonication device properties need to be listed when reporting on sonication‐based soil aggregate disruption. The overall small differences in the degree of disruption of soil aggregates between different laboratories demonstrate that sonication with the energies tested (30 and 400 J mL) provides replicable results despite the variations regarding procedures and equipment.
    Keywords: Disaggregation ; Particle Size Fractions ; Reproducibility ; Round‐Robin Test ; Ultrasound
    ISSN: 1436-8730
    E-ISSN: 1522-2624
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages