Kooperativer Bibliotheksverbund

Berlin Brandenburg

Your search history is empty.
and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Infection and Immunity, 2008, Vol. 76(4), p.1608
    Description: The ability to bind extracellular matrix proteins is a critical virulence determinant for skin pathogens. Haemophilus ducreyi, the etiological agent of the genital ulcer disease chancroid, binds extracellular matrix components, including fibronectin (FN). We investigated H. ducreyi FN binding and report several important findings about this interaction. First, FN binding by H. ducreyi was greatly increased in bacteria grown on heme and almost completely inhibited by hemoglobin. Second, wild-type strain 35000HP bound significantly more FN than did a dsrA mutant in two different FN binding assays. Third, the expression of dsrA in the dsrA mutant restored FN binding and conferred the ability to bind FN to a non-FN-binding Haemophilus influenzae strain. Fourth, an anti-DsrA monoclonal antibody partially blocked FN binding by H. ducreyi. The hemoglobin receptor, the collagen-binding protein, the H. ducreyi lectin, the fine-tangle pili, and the outer membrane protein OmpA2 were not involved in H. ducreyi FN binding, since single mutants bound FN as well as the parent strain did. However, the major outer membrane protein may have a minor role in FN binding by H. ducreyi, since a double dsrA momp mutant bound less FN than did the single dsrA mutant. Finally, despite major sequence differences, DsrA proteins from both class I and class II H. ducreyi strains mediated FN and vitronectin binding. We concluded that DsrA is the major factor involved in FN binding by both classes of H. ducreyi strains.
    Keywords: Medicine ; Biology;
    ISSN: 0019-9567
    ISSN: 00199567
    E-ISSN: 10985522
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Infection and Immunity, 2006, Vol. 74(2), p.1394
    Description: Haemophilus ducreyi produces two outer membrane proteins, called DltA (H. ducreyi lectin A) and DsrA (H. ducreyi serum resistance A), that contribute to the ability of the organism to evade complement-mediated serum killing. In contrast to their isogenic parent strain, 35000HP, the DsrA mutant FX517 exhibits 0% survival in 50% normal human serum and the DltA mutant FX533 exhibits 23% survival. Compared to 35000HP, FX517 does not cause pustule formation in human volunteers. To test whether DltA was required for virulence in humans, seven volunteers were experimentally infected with 35000HP and FX533. Four subjects were inoculated with fixed doses of 35000HP (101 CFU or 130 CFU) at three sites on one arm and escalating doses of FX533 (range, 46 CFU to 915 CFU) at three sites on the other arm. Pustules only developed at mutant-injected sites at doses nearly twofold higher than that of the parent, suggesting that FX533 was partially attenuated. Three subjects were inoculated with similar doses of the parent (67 CFU) and mutant (104 CFU) at three sites. Pustules formed at five of nine parent sites and one of nine mutant sites. Overall, the papule and pustule formation rates for 35000HP and FX533 were similar for the trial. However, for the five subjects who received similar doses of the parent and mutant, pustules developed at 7 of 15 sites (46.7%; 95% confidence interval [CI], 16.9% to 76.5%) inoculated with the parent and at 1 of 15 (6.7%; 95% CI, 0.1% to 18.4%) sites inoculated with the mutant (P = 0.043). We concluded that the DltA mutant was attenuated in its ability to cause disease at doses similar to that of the parent.
    Keywords: Mutation ; Bacterial Outer Membrane Proteins -- Genetics ; Chancroid -- Pathology ; Haemophilus Ducreyi -- Pathogenicity;
    ISSN: 0019-9567
    ISSN: 00199567
    E-ISSN: 10985522
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Infection and Immunity, 2006, Vol. 74(5), p.2651
    Description: Haemophilus ducreyi, the etiologic agent of the sexually transmitted genital ulcer disease chancroid, has been shown to associate with dermal collagen fibers within infected skin lesions. Here we describe NcaA, a previously uncharacterized outer membrane protein that is important for H. ducreyi collagen binding and host colonization. An H. ducreyi strain lacking the ncaA gene was impaired in adherence to type I collagen but not fibronectin (plasma or cellular form) or heparin. The mutation had no effect on serum resistance or binding to HaCaT keratinocytes or human foreskin fibroblasts in vitro. Escherichia coli expressing H. ducreyi NcaA bound to type I collagen, demonstrating that NcaA is sufficient to confer collagen attachment. The importance of NcaA in H. ducreyi pathogenesis was assessed using both swine and human experimental models of chancroid. In the swine model, 20% of lesions from sites inoculated with the ncaA mutant were culture positive for H. ducreyi 7 days after inoculation, compared to 73% of wild-type-inoculated sites. The average number of CFU recovered from mutant-inoculated lesions was also significantly reduced compared to that recovered from wild-type-inoculated sites at both 2 and 7 days after inoculation. In the human challenge model, 8 of 30 sites inoculated with wild-type H. ducreyi progressed to the pustular stage, compared to 0 of 30 sites inoculated with the ncaA mutant. Together these results demonstrate that the collagen binding protein NcaA is required for H. ducreyi infection.
    Keywords: Fibers ; Outer Membrane Proteins ; Skin Diseases ; Ulcers ; Fibronectin ; Colony-Forming Cells ; Chancroid ; Keratinocytes ; Heparin ; Collagen (Type I) ; Fibroblasts ; Escherichia Coli ; Haemophilus Ducreyi ; Sexually-Transmitted Diseases ; Bacteria ; Ncaa Protein;
    ISSN: 0019-9567
    ISSN: 00199567
    E-ISSN: 10985522
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages