Kooperativer Bibliotheksverbund

Berlin Brandenburg

Your search history is empty.
and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
Year
  • 1
    Language: English
    In: The Journal of chemical physics, 28 December 2015, Vol.143(24), pp.244704
    Description: A theoretical proof of the concept that a particularly designed graphene-based moletronics device, constituted by two semi-infinite graphene subunits, acting as source and drain electrodes, and a central benzenoid ring rotator (a "quantum dot"), could act as a field-controllable molecular switch is outlined and analyzed with the density functional theory approach. Besides the ideal (0 K) case, we also consider the operation of such a device under realistic operating (i.e., finite-temperature) conditions. An in-depth insight into the physics behind device controllability by an external field was gained by thorough analyses of the torsional potential of the dot under various conditions (absence or presence of an external gating field with varying strength), computing the torsional correlation time and transition probabilities within the Bloembergen-Purcell-Pound formalism. Both classical and quantum mechanical tunneling contributions to the intramolecular rotation were considered in the model. The main idea that we put forward in the present study is that intramolecular rotors can be controlled by the gating field even in cases when these groups do not possess a permanent dipole moment (as in cases considered previously by us [I. Petreska et al., J. Chem. Phys. 134, 014708-1-014708-12 (2011)] and also by other groups [P. E. Kornilovitch et al., Phys. Rev. B 66, 245413-1-245413-7 (2002)]). Consequently, one can control the molecular switching properties by an external electrostatic field utilizing even nonpolar intramolecular rotors (i.e., in a more general case than those considered so far). Molecular admittance of the currently considered graphene-based molecular switch under various conditions is analyzed employing non-equilibrium Green's function formalism, as well as by analysis of frontier molecular orbitals' behavior.
    Keywords: Articles;
    ISSN: 00219606
    E-ISSN: 1089-7690
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: The Journal of Chemical Physics, 28 December 2015, Vol.143(24)
    Description: A theoretical proof of the concept that a particularly designed graphene-based moletronics device, constituted by two semi-infinite graphene subunits, acting as source and drain electrodes, and a central benzenoid ring rotator (a “quantum dot”), could act as a field-controllable molecular switch is outlined and analyzed with the density functional theory approach. Besides the ideal (0 K) case, we also consider the operation of such a device under realistic operating (i.e., finite-temperature) conditions. An in-depth insight into the physics behind device controllability by an external field was gained by thorough analyses of the torsional potential of the dot under various conditions (absence or presence of an external gating field with varying strength), computing the torsional correlation time and transition probabilities within the Bloembergen-Purcell-Pound formalism. Both classical and quantum mechanical tunneling contributions to the intramolecular rotation were considered in the model. The main idea that we put forward in the present study is that intramolecular rotors can be controlled by the gating field even in cases when these groups do not possess a permanent dipole moment (as in cases considered previously by us [I. Petreska et al. , J. Chem. Phys. 134 , 014708-1–014708-12 (2011)] and also by other groups [P. E. Kornilovitch et al. , Phys. Rev. B 66 , 245413-1–245413-7 (2002)]). Consequently, one can control the molecular switching properties by an external electrostatic field utilizing even nonpolar intramolecular rotors (i.e., in a more general case than those considered so far). Molecular admittance of the currently considered graphene-based molecular switch under various conditions is analyzed employing non-equilibrium Green’s function formalism, as well as by analysis of frontier molecular orbitals’ behavior.
    Keywords: Articles
    ISSN: 0021-9606
    E-ISSN: 1089-7690
    Source: © 2015 AIP Publishing LLC (AIP)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: The Journal of Chemical Physics, 07 January 2011, Vol.134(1)
    Description: A bistable, dipolar stator-rotor molecular system-candidate for molecular electronics is investigated. We demonstrate that it is possible to control the intramolecular torsional states and dynamics in this system by applying an appropriate additional electric field (instead of biasing one), achieving fine tuning and modulation of the relevant properties. The electric field effects on the quantities responsible for torsional dynamics (potential energy surface, potential barrier height, quantum and classical transition probabilities, correlation time, HOMO-LUMO gap) are studied from first principles. Our results indicate that it is possible to artificially stabilize the metastable conformational state of the studied molecule. The importance of this is evident, as the current-voltage characteristics of the metastable state are clearly distinguishable from the current-voltage characteristics of the two stable states. We report for the first time exact calculations related to the possibilities to control the thermally induced stochastic switching, and reduce the noise in a practical application. Thus, we believe that the molecule studied in this paper could operate as a field-switchable molecular device under real conditions.
    Keywords: Articles
    ISSN: 0021-9606
    E-ISSN: 1089-7690
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: PLoS ONE, 2016, Vol.11(8)
    Description: Economic complexity reflects the amount of knowledge that is embedded in the productive structure of an economy. By combining tools from network science and econometrics, a robust and stable relationship between a country’s productive structure and its economic growth has been established. Here we report that not only goods but also services are important for predicting the rate at which countries will grow. By adopting a terminology which classifies manufactured goods and delivered services as products, we investigate the influence of services on the country’s productive structure. In particular, we provide evidence that complexity indices for services are in general higher than those for goods, which is reflected in a general tendency to rank countries with developed service sector higher than countries with economy centred on manufacturing of goods. By focusing on country dynamics based on experimental data, we investigate the impact of services on the economic complexity of countries measured in the product space (consisting of both goods and services). Importantly, we show that diversification of service exports and its sophistication can provide an additional route for economic growth in both developing and developed countries.
    Keywords: Research Article ; Social Sciences ; Social Sciences ; Social Sciences ; Ecology And Environmental Sciences ; Research And Analysis Methods ; Physical Sciences ; People And Places ; Social Sciences ; Social Sciences ; Social Sciences ; Physical Sciences
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: PLoS ONE, 2014, Vol.9(6)
    Description: Many contagions spread over various types of communication networks and their spreading dynamics have been extensively studied in the literature. Here we propose a general model for the concurrent spread of an arbitrary number of contagions in complex networks. The model is stochastic and runs in discrete time, and includes two widely used mechanisms by which a node can change its state. The first, termed the spontaneous state change mechanism, describes spontaneous transition to another state, while the second, termed the contact-induced state change mechanism, describes acquiring other contagions due to contact with the neighbors. We consider reactive discrete-time spreading processes of multiple concurrent contagions where time steps are of finite size without neglecting the possibility of multiple infecting events in a single time step. An essential element for making the model numerically tractable is the use of an approximation for the probability that a node transits to a specific state given any set of neighboring states. Different transmission probabilities may be present between each pair of states. We also derive corresponding continuous–time equations that are simple and intuitive. The model includes many well-known epidemic and rumor spreading models as a special case and it naturally captures spreading processes in multiplex networks.
    Keywords: Research Article ; Biology And Life Sciences ; Computer And Information Sciences ; Medicine And Health Sciences ; Physical Sciences ; Research And Analysis Methods
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Physical review. E, Statistical, nonlinear, and soft matter physics, July 2011, Vol.84(1 Pt 2), pp.016104
    Description: We introduce a broad class of analytically solvable processes on networks. In the special case, they reduce to random walk and consensus process, the two most basic processes on networks. Our class differs from previous models of interactions (such as the stochastic Ising model, cellular automata, infinite particle systems, and the voter model) in several ways, the two most important being (i) the model is analytically solvable even when the dynamical equation for each node may be different and the network may have an arbitrary finite graph and influence structure and (ii) when local dynamics is described by the same evolution equation, the model is decomposable, with the equilibrium behavior of the system expressed as an explicit function of network topology and node dynamics.
    Keywords: Models, Theoretical
    E-ISSN: 1550-2376
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Physical review. E, Statistical, nonlinear, and soft matter physics, January 2012, Vol.85(1 Pt 2), pp.016114
    Description: The influence of the network's structure on the dynamics of spreading processes has been extensively studied in the last decade. Important results that partially answer this question show a weak connection between the macroscopic behavior of these processes and specific structural properties in the network, such as the largest eigenvalue of a topology related matrix. However, little is known about the direct influence of the network topology on the microscopic level, such as the influence of the (neighboring) network on the probability of a particular node's infection. To answer this question, we derive both an upper and a lower bound for the probability that a particular node is infective in a susceptible-infective-susceptible model for two cases of spreading processes: reactive and contact processes. The bounds are derived by considering the n-hop neighborhood of the node; the bounds are tighter as one uses a larger n-hop neighborhood to calculate them. Consequently, using local information for different neighborhood sizes, we assess the extent to which the topology influences the spreading process, thus providing also a strong macroscopic connection between the former and the latter. Our findings are complemented by numerical results for a real-world email network. A very good estimate for the infection density ρ is obtained using only two-hop neighborhoods, which account for 0.4% of the entire network topology on average.
    Keywords: Models, Theoretical ; Communicable Diseases -- Epidemiology
    E-ISSN: 1550-2376
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Physical review. E, Statistical, nonlinear, and soft matter physics, October 2011, Vol.84(4 Pt 2), pp.046102
    Description: Communities are not static; they evolve, split and merge, appear and disappear, i.e., they are the product of dynamical processes that govern the evolution of a network. A good algorithm for community detection should not only quantify the topology of the network but incorporate the dynamical processes that take place on the network. We present an algorithm for community detection that combines network structure with processes that support the creation and/or evolution of communities. The algorithm does not embrace the universal approach but instead tries to focus on social networks and model dynamic social interactions that occur on those networks. It identifies leaders and communities that form around those leaders. It naturally supports overlapping communities by associating each node with a membership vector that describes the node's involvement in each community. This way, in addition to the overlapping communities, we can identify nodes that are good followers of their leader and also nodes with no clear community involvement that serve as proxies between several communities and that are equally as important. We run the algorithm for several real social networks which we believe represent a good fraction of the wide body of social networks and discuss the results, including other possible applications.
    Keywords: Physics - Physics And Society ; Condensed Matter - Statistical Mechanics ; Computer Science - Social And Information Networks;
    E-ISSN: 1550-2376
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: PLoS ONE, 2014, Vol.9(6)
    Description: Complex networks have recently become the focus of research in many fields. Their structure reveals crucial information for the nodes, how they connect and share information. In our work we analyze protein interaction networks as complex networks for their functional modular structure and later use that information in the functional annotation of proteins within the network. We propose several graph representations for the protein interaction network, each having different level of complexity and inclusion of the annotation information within the graph. We aim to explore what the benefits and the drawbacks of these proposed graphs are, when they are used in the function prediction process via clustering methods. For making this cluster based prediction, we adopt well established approaches for cluster detection in complex networks using most recent representative algorithms that have been proven as efficient in the task at hand. The experiments are performed using a purified and reliable Saccharomyces cerevisiae protein interaction network, which is then used to generate the different graph representations. Each of the graph representations is later analysed in combination with each of the clustering algorithms, which have been possibly modified and implemented to fit the specific graph. We evaluate results in regards of biological validity and function prediction performance. Our results indicate that the novel ways of presenting the complex graph improve the prediction process, although the computational complexity should be taken into account when deciding on a particular approach.
    Keywords: Research Article ; Biology And Life Sciences ; Computer And Information Sciences ; Physical Sciences
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: IEEE Network, Nov-Dec, 2010, Vol.24(6), p.6-9
    Description: We argue that we are witnessing a paradigm shift in science, which could be referred to as network science. Some of the fundamental findings and open problems in network science are reviewed. Since most questions are still largely open, it is expected that the network science will still attract researches with different background: mathematics, physics, biology, electrical and computer engineering, and sociology, to mention only a few.
    Keywords: Computer Networks -- Research ; Computer Networks -- Forecasts And Trends
    ISSN: 0890-8044
    E-ISSN: 1558156X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages