Kooperativer Bibliotheksverbund

Berlin Brandenburg

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Earth and Planetary Science Letters, 01 July 2019, Vol.517, pp.135-147
    Description: The current understanding of tsunamis generated by volcanic-island landslides is reliant on numerical models benchmarked against reconstructions of past events. As the largest historical event with timed tsunami observations, the 1888 sector collapse of Ritter Island, Papua New Guinea provides an outstanding opportunity to better understand the linked process of landslide emplacement and tsunami generation. Here, we use a combination of geophysical imaging, bathymetric mapping, seafloor observations and sampling to demonstrate that the Ritter landslide deposits are spatially and stratigraphically heterogeneous, reflecting a complex evolution of mass-flow processes. The primary landslide mass was dominated by well-bedded scoriaceous deposits, which rapidly disintegrated to form an erosive volcaniclastic flow that incised the substrate over much of its pathway. The major proportion of this initial flow is inferred to have been deposited up to 80 km from Ritter. The initial flow was followed by secondary failure of seafloor sediment, over 40 km from Ritter. The most distal part of the 1888 deposit has parallel internal boundaries, suggesting that multiple discrete units were deposited by a series of mass-flow processes initiated by the primary collapse. The last of these flows was derived from a submarine eruption triggered by the collapse. This syn-collapse eruption deposit is compositionally distinct from pre- and post-collapse eruptive products, suggesting that the collapse immediately destabilised the underlying magma reservoir. Subsequent eruptions have been fed by a modified plumbing system, constructing a submarine volcanic cone within the collapse scar through at least six post-collapse eruptions. Our results show that the initial tsunami-generating landslide at Ritter generated a stratigraphically complex set of deposits with a total volume that is several times larger than the initial failure. Given the potential for such complexity, there is no simple relationship between the volume of the tsunamigenic phase of a volcanic-island landslide and the final deposit volume, and deposit area or run-out cannot be used to infer primary landslide magnitude. The tsunamigenic potential of prehistoric sector-collapse deposits cannot, therefore, be assessed simply from surface mapping, but requires internal geophysical imaging and direct sampling to reconstruct the event.
    Keywords: Sector Collapse ; Volcanic Island ; Tsunami ; Landslide ; Ritter Island ; Papua New Guinea ; Geology ; Physics
    ISSN: 0012-821X
    E-ISSN: 1385-013X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Earth and Planetary Science Letters, 01 July 2019, Vol.517, pp.1-13
    Description: Volcanic island flank collapses have the potential to trigger devastating tsunamis threatening coastal communities and infrastructure. The 1888 sector collapse of Ritter Island, Papua New Guinea (in the following called Ritter) is the most voluminous volcanic island flank collapse in historic times. The associated tsunami had run-up heights of more than 20 m on the neighboring islands and reached settlements 600 km away from its source. This event provides an opportunity to advance our understanding of volcanic landslide-tsunami hazards. Here, we present a detailed reconstruction of the 1888 Ritter sector collapse based on high-resolution 2D and 3D seismic and bathymetric data covering the failed volcanic edifice and the associated mass-movement deposits. The 3D seismic data reveal that the catastrophic collapse of Ritter occurred in two phases: (1) Ritter was first affected by deep-seated, gradual spreading over a long time period, which is manifest in pronounced compressional deformation within the volcanic edifice and the adjacent seafloor sediments. A scoria cone at the foot of Ritter acted as a buttress, influencing the displacement and deformation of the western flank of the volcano and causing shearing within the volcanic edifice. (2) During the final, catastrophic phase of the collapse, about 2.4 km of Ritter disintegrated almost entirely and traveled as a highly energetic mass flow, which incised the underlying sediment. The irregular topography west of Ritter is a product of both compressional deformation and erosion. A crater-like depression underlying the recent volcanic cone and eyewitness accounts suggest that an explosion may have accompanied the catastrophic collapse. Our findings demonstrate that volcanic sector collapses may transform from slow gravitational deformation to catastrophic collapse. Understanding the processes involved in such a transformation is crucial for assessing the hazard potential of other volcanoes with slowly deforming flanks such as Mt. Etna or Kilauea.
    Keywords: Volcanic Sector Collapse ; Ritter Island ; Landslide ; Tsunami ; 3d Seismic Interpretation ; Geology ; Physics
    ISSN: 0012-821X
    E-ISSN: 1385-013X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages