Kooperativer Bibliotheksverbund

Berlin Brandenburg

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: International Journal of Cancer, 10 March 2003, Vol.104(1), pp.36-43
    Description: Cytotoxic drug treatment of neuroblastoma often leads to the development of drug resistance and may be associated with increased malignancy. To study the effects of long‐term cytotoxic treatment on malignant properties of tumor cells, we established 2 neuroblastoma cell sublines resistant to vincristine (VCR) and doxorubicin (DOX). Both established cell lines (UKF‐NB‐2VCR and UKF‐NB‐2DOX) were highly resistant to VCR, DOX and vice‐versa but retained their sensitivity to cisplatin. UKF‐NB‐2VCR and UKF‐NB‐2DOX expressed significant amounts of P‐glycoprotein, while parental cells were P‐glycoprotein negative. GD2 expression was upregulated, whereas NCAM expression was decreased in both resistant cells. Spectral karyotype (SKY) analysis revealed complex aberrant karyotypes in all cell lines and additional acquired karyotype changes in both resistant cells. All cell lines harbored high levels of N‐myc amplification. Compared to parental cells, UKF‐NB‐2VCR and UKF‐NB‐2DOX exhibited more than 2‐fold increase in clonal growth , accelerated adhesion and transendothelial penetration and higher tumorigenicity . We conclude that development of drug resistance and acquisition of certain karyotypic alterations is associated with an increase of additional malignant properties that may contribute to the poor prognosis in advanced forms of NB. The 2 novel neuroblastoma cell sublines also provide useful models for the study of drug resistance in aggressive forms of neuroblastoma. © 2002 Wiley‐Liss, Inc.
    Keywords: Neuroblastoma ; Drug Resistance ; Mdr‐1 ; Ncam ; Gd2 ; Karyotype
    ISSN: 0020-7136
    E-ISSN: 1097-0215
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: FEMS Microbiology Reviews, February 2004, Vol.28(1), pp.59-77
    Description: A high frequency of human cytomegalovirus (HCMV) genome and antigens in tumor samples of patients with different malignancies is now well documented, although the causative role for HCMV in the development of the neoplasias remains to be established. HCMV infection can modulate multiple cellular regulatory and signalling pathways in a manner similar to that of oncoproteins of small DNA tumor viruses such as human papilloma virus or adenoviruses. However, in contrast to these DNA tumor viruses, HCMV infection fails to transform susceptible normal human cells. There is now growing evidence that tumor cells with disrupted regulatory and signalling pathways enable HCMV to modulate their properties including stimulation of cell proliferation, survival, invasion, production of angiogenic factors, and immunogenic properties. In contrast to previously suggested “hit and run” transformation we suggest that persistence in tumor cells is essential for HCMV to fully express its oncomodulatory effects. These effects are observed particularly in persistent HCMV infection and are mediated mainly by activity of HCMV regulatory proteins. In persistently HCMV‐infected tumor cell lines – a selection of novel, slowly growing virus variants with changes in coding sequences for virus regulatory proteins takes place. As a result, oncomodulatory effects of HCMV infection may lead to a shift to more malignant phenotype of tumor cells contributing to tumor progression.
    Keywords: Human Cytomegalovirus ; Oncomodulation ; Tumor ; Dna‐Virus ; Apoptosis ; Angiogenesis
    ISSN: 0168-6445
    E-ISSN: 1574-6976
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages