Kooperativer Bibliotheksverbund

Berlin Brandenburg

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
Search in libraries
and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Journal of Soils and Sediments, 2013, Vol.13(3), pp.606-615
    Description: Byline: Horst Schonsky (1), Andre Peters (1), Friederike Lang (2), Stefan Abel (1), Beate Mekiffer (3), Gerd Wessolek (1) Keywords: Column experiment; Construction rubble; Numerical modeling; Sulfate; Urban soil Abstract: Purpose In Berlin and many other cities, technogenic soil substrates from World War II and building and construction debris, in general, play an important role for soil formation and solute transport in the vadose zone. The largest debris landfill in Berlin is the Teufelsberg. Sulfate release from the landfill poses threats to groundwater quality. The scope of this study is to determine and model the processes controlling sulfate release from soils containing construction rubble. Materials and methods Column leaching experiments were conducted to analyze sulfate mobilization from Teufelsberg topsoil material. Flow interruptions of 1 and 7 days were applied. Sulfate release was modeled using a geochemical simulation tool (HP1). The model considered water flux, solute transport, and precipitation/dissolution with first-order kinetics. Results and discussion Sulfate release increased after flow interruptions, although bromide breakthrough indicated physical equilibrium of transport processes. Hence, kinetically limited solution/dissolution of sulfate is assumed. The model was applicable for qualitative description of our experimental results. The estimated equilibrium concentrations of sulfate were one to two orders of magnitude smaller than expected according to the equilibrium constant of gypsum. Conclusions It is assumed that the mobilization and transport of sulfate from debris soil material can be described by an effective model. If sulfate release and transport from soils containing debris is modeled using literature values of thermodynamic constants for gypsum, sulfate concentrations will be overestimated by one to two orders of magnitude. Author Affiliation: (1) Fachgebiet Standortkunde und Bodenschutz, Technische Universitat Berlin, Ernst Reuter Platz 1, 10587, Berlin, Germany (2) Institut fur Bodenkunde und Waldernahrungslehre, Albert Ludwig Universitat Freiburg, Bertoldstr. 17, 79085, Freiburg i.Br., Germany (3) WISTA-MANAGEMENT GMBH, Rudower Chaussee 17, 12489, Berlin, Germany Article History: Registration Date: 01/10/2012 Received Date: 12/12/2011 Accepted Date: 01/10/2012 Online Date: 19/10/2012 Article note: Responsible editor: Jean Louis Morel
    Keywords: Column experiment ; Construction rubble ; Numerical modeling ; Sulfate ; Urban soil
    ISSN: 1439-0108
    E-ISSN: 1614-7480
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Journal of Soils and Sediments, 2015, Vol.15(1), pp.1-12
    Description: Byline: Daniela Gildemeister (1,2), George Metreveli (1), Sandra Spielvogel (3), Sabina Hens (1,4), Friederike Lang (5), Gabriele E. Schaumann (1) Keywords: Cation bridges; Cross-link; Differential scanning calorimetry; Dissolved organic matter; Glass transition; Water molecule bridges Abstract: Purpose Precipitation of dissolved organic matter (DOM) by multivalent cations is important for biogeochemical cycling of organic carbon. We investigated to which extent cation bridges are involved in DOM precipitation and how cross-links by cations and water molecule bridges (WaMB) stabilise the matrix of precipitated DOM. Materials and methods DOM was precipitated from the aqueous extract of a forest floor layer adding solutions of Ca(NO.sub.3).sub.2, Al(NO.sub.3).sub.3 and Pb(NO.sub.3).sub.2 with different initial metal cation/C (Me/C) ratios. Precipitates were investigated by differential scanning calorimetry before and after ageing to detect cation bridges, WaMB and restructuring of supramolecular structure. Results and discussion Twenty-five to sixty-seven per cent of the dissolved organic carbon was precipitated. The precipitation efficiency of cations increased in the order Ca〈Al〈Pb, while the cation content of precipitates increased in the order Pb〈Ca〈Al. The different order and the decrease in the WaMB transition temperature (T*) for Al/C〉3 is explained by additional formation of small AlOOH particles. Thermal analysis indicated WaMB and their disruption at T* of 53--65 [degrees]C. Like cation content, T* increased with increasing Me/C ratio and in the order Ca〈Pb〈Al for low Me/C. This supports the general assumption that cross-linking ability increases in the order Ca〈Pb〈Al. The low T* for high initial Me/C suggests less stable and less cross-linked precipitates than for low Me/C ratios. Conclusions Our results suggest a very similar thermal behaviour of OM bound in precipitates compared with soil organic matter and confirms the relevance of WaMB in stabilisation of the supramolecular structure of cation-DOM precipitates. Thus, stabilisation of the supramolecular structure of the DOM precipitates is subjected to dynamics in soils. Author Affiliation: (1) Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Universitat Koblenz-Landau, Fortstr. 7, 76829, Landau, Germany (2) Umweltbundesamt, FG IV 2.2 Pharmaceuticals, Worlitzer Platz 1, 06844, Dessau-Ro[sz]lau, Germany (3) Department of Geography, Institute of Integrated Natural Sciences, Universitat Koblenz-Landau, Universitatsstr. 1, 56070, Koblenz, Germany (4) GN Dr. Netta Beratende Ingenieure und Geowissenschaftler, Bienengarten 3, 56072, Koblenz, Germany (5) Albert-Ludwigs-Universitat Freiburg, Institute of Forest Sciences, 79085, Freiburg i.Br., Germany Article History: Registration Date: 09/07/2014 Received Date: 02/04/2014 Accepted Date: 09/07/2014 Online Date: 30/07/2014 Article note: Responsible editor: Dong-Mei Zhou Electronic supplementary material The online version of this article (doi: 10.1007/s11368-014-0946-9) contains supplementary material, which is available to authorized users.
    Keywords: Cation bridges ; Cross-link ; Differential scanning calorimetry ; Dissolved organic matter ; Glass transition ; Water molecule bridges
    ISSN: 1439-0108
    E-ISSN: 1614-7480
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Journal of Soils and Sediments, 2012, Vol.12(8), pp.1209-1210
    Description: Issue Title: Special issue: Coevolution of organic substances and soils
    Keywords: Environment ; Environmental Physics ; Soil Science & Conservation ; Environment, General ; Agriculture;
    ISSN: 1439-0108
    E-ISSN: 1614-7480
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages