Skip to main content

Advertisement

Log in

Shrub management is the principal driver of differing population sizes between native and invasive populations of Rosa rubiginosa L.

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

An essential step in understanding biological invasions is the comparison of species’ performance in the native and introduced ranges, especially for long-lived woody exotics. We explored causes for the higher density and abundance of invasive Rosa rubiginosa L. populations by comparing plant performance and habitat attributes in both ranges. Native shrubs in Spain and Germany were, on average, taller than introduced shrubs in Central and Southern Argentina. Inside 100 m2 plots rose-cover in Spain and Germany was significantly higher than in Central Argentina but comparable to that found in Southern Argentina. Growth rates of marked branches did not differ between ranges, but marked shrubs indicated that native R. rubiginosa stems are cut regularly, with the oldest rose stems being found in Argentina. Seeds from the introduced range did not have higher germination rates overall, and low seedling numbers in the field underline the general importance of vegetative growth for the species. Leaf damage did not differ between regions and soil analyses proved that R. rubiginosa tolerate a wide range of soil conditions without necessarily benefiting from any one in particular. No differences were observed in vegetation structure, pointing to favorable conditions in the introduced range, and greenhouse experiments showed that plants of invasive origin do not outgrow native roses. The smaller population sizes and lower abundance in the native range can therefore be attributed to management actions along with a lower level of viable habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams JM, Fang W, Callaway RM, Cipollini D, Newell E (2009) A cross-continental test of the enemy release hypothesis: leaf herbivory on Acer platanoides (L.) is three times lower in North America than in its native Europe. Biol Invasions 11:1005–1016

    Article  Google Scholar 

  • Bates D, Maechler M (2010) lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-37. http://CRAN.R-project.org/package=lme4

  • Bellingham PJ, Duncan RP, Lee WG, Buxton RP (2004) Seedling growth rate and survival do not predict invasiveness in naturalized woody plants in New Zealand. Oikos 106:308–316

    Article  Google Scholar 

  • Binggeli P (1996) A taxonomic, biogeographical and ecological overview of invasive woody plants. J Veg Sci 7:121–124

    Article  Google Scholar 

  • Blair AC, Wolfe LM (2004) The evolution of an invasive plant: an experimental study with Silene latifolia. Ecology 85:3035–3042

    Article  Google Scholar 

  • Blanck Y-L, Gowda J, Mårtensson L-M, Sandberg J, Fransson A-M (2010) Plant species richness in a natural Argentinian matorral shrub-land correlates negatively with levels of plant phosphorus. Plant Soil. doi:10.1007/s11104-010-0671-0

    Google Scholar 

  • Blossey B, Nötzbold R (1995) Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J Ecol 83:887–889

    Article  Google Scholar 

  • Blumenthal DM, Hufbauer RA (2007) Increased plant size in exotic populations: a common-garden test with 14 invasive species. Ecology 88:2758–2765

    Article  PubMed  Google Scholar 

  • Bossdorf O, Lipowsky A, Prati D (2008) Selection of preadapted populations allowed Senecio inaequidens to invade Central Europe. Divers Distrib 14:676–685

    Article  Google Scholar 

  • Bruun HH (2006) Prospects for biocontrol of invasive Rosa rugosa. Biocontrol 51:141–181

    Article  Google Scholar 

  • Cabido M, Breimer R, Vega G (1987) Plant-communities and associated soil types in a high plateau of the Cordóba mountains, Central Argentina. Mt Res Dev 7:25–42

    Article  Google Scholar 

  • Callaway RM, Thelen G, Rodriguez A, Holben WE (2004) Release from inhibitory soil biota in Europe and positive plant-soil feedbacks in North America promote invasion. Nature 427:731–733

    Article  PubMed  CAS  Google Scholar 

  • Catford JA, Jansson R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15:22–40

    Article  Google Scholar 

  • Damascos MA, Ladio AH, Rovere AE, Ghermandi L (2005) Semillas de rosa mosqueta: dispersión y germinación en diferentes bosques nativos andino-patagónicos. Patagonia For 11:2–6

    Google Scholar 

  • Damascos MA, Arribere M, Svriz M, Bran D (2008) Fruit mineral contents of six wild species of the North Andean Patagonia, Argentina. Biol Trace Elem Res 125:72–82

    Article  PubMed  CAS  Google Scholar 

  • Davis MA (2009) Invasion biology. Oxford University Press, New York

    Google Scholar 

  • De Fina AL (1972) El clima de la región de los bosques Andino-Patagónicos. In: Dimitri M (ed) La región de los bosques Andino-Patagónicos, Sinopsis General. Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, pp 35–58

    Google Scholar 

  • de Walt SJ, Denslow JS, Ickes K (2004) Natural-enemy release facilitates habitat expansion of the invasive tropical shrub Clidemia hirta. Ecology 85:471–483

    Article  Google Scholar 

  • Ebeling SK, Hensen I, Auge H (2008) The invasive shrub Buddleja davidii performs better in its introduced range. Divers Distrib 14:225–233

    Article  Google Scholar 

  • Engler J, Abt K, Buhk C (2011) Seed characteristics and germination limitations in the highly invasive Fallopia japonica s.l (Polygonaceae). Ecol Res. doi:10.1007/s11284-011-0813-8

    Google Scholar 

  • Epstein AH, Hill JH (1999) Status of rose rosette disease as a biological control for multiflora rose. Plant Dis 83:92–101

    Article  Google Scholar 

  • Erfmeier A, Bruelheide H (2005) Invasive and native Rhododendron ponticum polpulations: is there evidence for genotypic differences in germination and growth? Ecography 28:417–428

    Article  Google Scholar 

  • Erfmeier A, Bruelheide H (2010) Invasibility or invasiveness? Effects of habitat, genotype, and their interaction on invasive Rhododendron ponticum populations. Biol Invasions 12:657–676

    Article  Google Scholar 

  • Eschtruth A, Battles J (2011) The importance of quantifying propagule pressure to understand invasion: An examination of riparian forest invasibility. Ecology. doi:10.1890/10-0857.1

    PubMed  Google Scholar 

  • Forcella F, Wood JT (1984) Colonization potentials of alien weeds are related to their native distributions—implications for plant quarantine. J Aust Inst Agric Sci 50:35–41

    Google Scholar 

  • Fox J, Weisberg S (2010) An {R} companion to applied regression. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion

  • Fukarek F, Henker H (2005) Flora von Mecklenburg-Vorpommern—Farn- und Blütenpflanzen. Weissdorn-Verlag, Jena

    Google Scholar 

  • Gordon AG, Rowe DCF (1982) Seed manual for ornamental trees and shrubs. Forestry Commission Bulletin, London

    Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Hanspach J, Kühn I, Pyšek P, Boos E, Klotz S (2008) Correlates of naturalization and occupancy of introduced ornamentals in Germany. Perspect Plant Ecol 10:241–250

    Article  Google Scholar 

  • Hatton TJ (1989) Spatial patterning of sweet briar (Rosa rubiginosa) by two vertebrate species. Aust J Ecol 14:199–205

    Article  Google Scholar 

  • Henker H (2000) Rosa. In: Conert HJ, Jäger EJ, Kadereit JW, Schultze-Motel W, Wagenitz G, Weber HE (eds) Gustav Hegi. Illustrierte Flora von Mitteleuropa, Parey, pp 33–108

    Google Scholar 

  • Herrera AM, Carruthers RI, Mills NJ (2011) Introduced populations of Genista monspessulana (French broom) are more dense and produce a greater seed rain in California, USA, than native populations in the Mediterranean Basin of Europe. Biol Invasions 13:369–380

    Article  Google Scholar 

  • Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol 93:5–15

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hirsch H, Zimmermann H, Ritz CM, Wissemann V, von Wehrden H, Renison D, Wesche K, Welk E, Hensen I (2011) Tracking the origin of invasive Rosa rubiginosa populations in Argentina. Int J Plant Sci 172:530–540

    Article  Google Scholar 

  • Hollingsworth ML, Bailey JP (2000) Evidence for massive clonal growth in the invasive weed, Fallopia japonica (Japanese knotweed). Bot J Linnean Soc 133:463–472

    Google Scholar 

  • Hoopes MF, Hall LM (2002) Edaphic factors and competition affect pattern formation and invasion in a California grassland. Ecol Appl 12:24–39

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometr J 50:346–363

    Article  Google Scholar 

  • Huenneke LF, Hamburg SP, Koide R, Mooney HA, Vitousek PM (1990) Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology 71:478–491

    Article  Google Scholar 

  • Isermann M (2008) Effects of Rosa rugosa invasion in different coastal dune vegetation types. In: Tokarska-Guzik B, Brock JH, Brundu G, Child L, Daehler CC, Pyšek P (eds) Plant invasions. Backhuys Publishers, Leiden, pp 289–307

    Google Scholar 

  • Jäger EJ, Werner K (2002) Exkursionsflora von Deutschland. Spektrum, Berlin

    Google Scholar 

  • Jakobs G, Weber E, Edwards PJ (2004) Introduced plants of the invasive Solidago gigantea (Asteraceae) are larger and grow denser than conspecifics in the native range. Divers Distrib 10:11–19

    Article  Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Article  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Article  Google Scholar 

  • Kidson R, Westoby M (2000) Seed mass and seedling dimensions in relation to seedling establishment. Oecologia 125:11–17

    Article  Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    Article  PubMed  Google Scholar 

  • Kuntze H, Roeschmann G, Schwerdtfeger G (1996) Bodenkunde. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Lambrinos JG (2006) Spatially variable propagule pressure and herbivory influence invasion of chaparral shrubland by an exotic grass. Oecologia 147:327–334

    Article  PubMed  Google Scholar 

  • Leishman MR (2001) Does the seed size/number trade-off model determine plant community structure? An assessment of the model mechanisms and their generality. Oikos 93:294–302

    Article  Google Scholar 

  • LeJeune KD, Suding KN, Seastedt TR (2006) Nutrient availability does not explain invasion and dominance of a mixed grass prairie by the exotic forb Centaurea diffusa Lam. Appl Soil Ecol 32:98–110

    Article  Google Scholar 

  • Loomis ES, Fishman L (2009) A continent-wide clone: population genetic variation of the invasive plant Hieracium aurantiacum (Orange Hawkweed; Asteraceae) in North America. Int J Plant Sci 170:759–765

    Article  Google Scholar 

  • Loux MM, Underwood JF, Amrine JW, Chandran R (2005) Multiflora rose control. Ohio State Univ Bull 857:1–16

    Google Scholar 

  • Ludwig G, Schnittler M (1996) Rote Liste gefährdeter Pflanzen Deutschlands. Bundesamt für Naturschutz, Bonn-Bad Godesberg

    Google Scholar 

  • Mejías JA, Arroyo J, Ojeda F (2002) Reproductive ecology of Rhododendron ponticum (Ericaceae) in relict Mediterranean populations. Bot J Linn Soc 140:297–311

    Article  Google Scholar 

  • Meusel H, Jäger EJ (1965) Vergleichende Chorologie der zentraleuropäischen Flora. Gustav Fischer, Jena

    Google Scholar 

  • Milton SJ, Dean WRJ, Klotz S (1997) Thicket formation in abandoned fruit orchards: processes and implications for the conservation of semi-dry grasslands in Central Germany. Biodivers Conserv 6:275–290

    Article  Google Scholar 

  • Moles AT, Westoby M (2004) What do seedlings die from and what are the implications for evolution of seed size? Oikos 106:193–199

    Article  Google Scholar 

  • Montserrat P, Silvestre S (1998) Rosa. In: Muñoz Garmendia F, Navarro C (eds) Flora Iberica. Real Jardín Botánico. CSIC, Madrid

    Google Scholar 

  • Nel JL, Richardson DM, Rouget M, Mgidi TN, Mdzeke N, Le Maitre DC, van Wilgen BW, Schonegevel L, Henderson L, Neser S (2004) A proposed classification of invasive alien plant species in South Africa: towards prioritizing species and areas for management action. S Afr J Sci 100:53–64

    Google Scholar 

  • Parker IM, Rodriguez J, Loik ME (2003) An evolutionary approach to understanding the biology of invasions: Local adaptation and general-purpose genotypes in the weed Verbascum thapsus. Conserv Biol 17:59–72

    Article  Google Scholar 

  • Parsons WT, Cuthbertson EG (2001) Noxious weeds of Australia. Csiro Publishing, Collingwood

    Google Scholar 

  • Pauchard A, Alaback PB (2004) Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of South-Central Chile. Conserv Biol 18:238–248

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

  • Reinhart KO, Royo AA, van der Putten WH, Clay K (2005) Soil feedback and pathogen activity in Prunus serotina throughout its native range. J Ecol 93:890–898

    Article  Google Scholar 

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809

    Article  Google Scholar 

  • Roiloa SR, Rodriguez-Echeverria S, de la Pena E, Freitas H (2010) Physiological integration increases the survival and growth of the clonal invader Carpobrotus edulis. Biol Invasions 12:1815–1823

    Article  Google Scholar 

  • Rowell DL (1997) Bodenkunde: Untersuchungsmethoden und ihre Anwendungen. Springer, Berlin

    Google Scholar 

  • Scharfy D, Güsewell S, Gessner MO, Venterink HO (2010) Invasion of Solidago gigantea in contrasting experimental plant communities: effects on soil microbes, nutrients and plant–soil feedbacks. J Ecol. doi:10.1111/j.1365-2745.2010.01722.x

    Google Scholar 

  • Schumacher E, Kueffer C, Edwards PJ, Dietzs H (2009) Infuence of light and nutrient conditions on seedling growth of native and invasive trees in the Seychelles. Biol Invasions 11:1941–1954

    Article  Google Scholar 

  • Scott JK, Panetta FD (1993) Predicting the Australian weed status of southern African plants. J Biogeogr 20:87–93

    Article  Google Scholar 

  • Seibert P (1993) Vegetation und Mensch in Südamerika aus historischer Sicht. Phytocoenologia 23:457–498

    Google Scholar 

  • Seitz B, Ristow M, Klemm G, Rätzel S, Schulze G, Hoffmann M (2004) Zur Verbreitung der Wildrosen und verwilderten Kulturrosen in Berlin und Brandenburg. In: Klemm G (ed) Verhandlungen des Botanischen Vereins von Berlin und Brandenburg, vol 137. Botanischer Verein von Berlin und Brandenburg, pp 137–267

  • Seltmann P, Leyer I, Renison D, Hensen I (2007) Variation of seed mass and its effects on germination in Polylepis australis: implications for seed collection. New For 33:171–181

    Article  Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  • Sher AA, Hyatt LA (1999) The disturbed resource-flux invasion matrix: a new framework for patterns of plant invasion. Biol Invasions 1:107–114

    Article  Google Scholar 

  • Siemann E, Rogers WE (2001) Genetic differences in growth of an invasive tree species. Ecol Lett 4:514–518

    Article  Google Scholar 

  • Speziale K, Lambertucci S (2010) A call for action to curb invasive species in South America. Nature 467:153. doi:10.1038/467153c

    Article  PubMed  CAS  Google Scholar 

  • Thébaud C, Simberloff D (2001) Are plants really larger in their introduced ranges? Amer Natur 157:231–236

    Article  Google Scholar 

  • Tripathi RS, Khan ML (1990) Effects of seed weight and microsite characteristics on germination and seedling fitness in 2 species of Quercus in a subtropical wet hill forest. Oikos 57:289–296

    Article  Google Scholar 

  • Trost M, Jäger UG, Jürgens K, Kraetzke M, Hausch R (2008) Schwerpunktthema: Erhaltung xerothermer Offenlandbiotope durch Integration von landwirtschaftlicher Nutzung und Naturschutzmaßnahmen. In: Arten- und Biotopschutzprogramm Sachsen-Anhalt, Berichte des Landesamtes für Umweltschutz Sachsen-Anhalt, Halle, pp 478–493

  • Vázquez DP, Aragón R (2002) Introduction. Biol Invasions 4:1–5

    Article  Google Scholar 

  • Vilà M, Maron JL, Marco L (2005) Evidence for the enemy release hypothesis in Hypericum perforatum. Oecologia 142:474–479

    Article  PubMed  Google Scholar 

  • Weber E (2003) Invasive plant species of the world: a reference guide to environmental weeds. CABI, Cambridge

    Google Scholar 

  • Werlemark G (2000) Evidence of apomixis in hemisexual dogroses Rosa section Caninae. Sex Plant Reprod 12:353–359

    Article  Google Scholar 

  • Werlemark G, Carlson-Nilsson U, Uggla M, Nybom H (1995) Effects of temperature treatments on seedling emergence in dogroses, Rosa Sect. Caninae (L). Acta Agriculturae Scandinavica: Sect. B. Soil Plant Sci 45:278–282

    Google Scholar 

  • Willis AJ, Blossey B (1999) Benign environments do not explain the increased vigour of non-indigenous plants: a cross-continental transplant experiment. Biocontrol Sci Tech 9:567–577

    Article  Google Scholar 

  • Willis AJ, Memmott J, Forrester RI (2000) Is there evidence for the post-invasion evolution of increased size among invasive plant species? Ecol Lett 3:275–283

    Article  Google Scholar 

  • Wissemann V, Hellwig F (1997) Reproduction and hybridisation in the genus Rosa Section Caninae (Ser.). Bot Acta 110:251–256

    Google Scholar 

  • Younis A, Riaz A, Ahmed R, Raza A (2007) Effect of hot water, sulphuric acid and nitric acid on the germination of rose seeds. Acta Hort (ISHS) 755:105–108

    CAS  Google Scholar 

  • Zimmermann H, Hensen I (2011) Some dark sides and their addressing. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin

  • Zimmermann H, Ritz CM, Hirsch H, Renison D, Wesche K, Hensen I (2010) Highly reduced genetic diversity of Rosa rubiginosa L. populations in the invasive range. Int J Plant Sci 171:435–446

    Article  CAS  Google Scholar 

  • Zimmermann H, von Wehrden H, Damascos MA, Bran D, Welk E, Renison D, Hensen I (2011) Habitat invasion risk assessment based on Landsat 5 data, exemplified by the shrub Rosa rubiginosa in southern Argentina. Aust Ecol. doi:10.1111/j.1442-9993.2010.02230.x

    Google Scholar 

  • Zvereva EL, Lanta V, Kozlov MV (2010) Effects of sap-feeding insect herbivores on growth and reproduction of woody plants: a meta-analysis of experimental studies. Oecologia. doi:10.1007/s00442-010-1633-1

    PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank H. Henker, P. Montserrat Recoder, C. Ritz, B. Seitz and V. Wissemann pinpointing R. rubiginosa populations in Europe and D. Bran, P. Marcora, J. Neme, M. Svriz and L. Volkmann for doing so in Argentina. For assistance in the lab we thank S. Both, C. Rosche, H. Heklau and C. Voigt, as well as H. Hirsch for her field assistance. For their help on rose excavation we would like to thank A. Cingolani, P. Marcora, R. Torres, B. Porzelius and I. Renison. Daniel McCluskey proofread this manuscript. Aníbal Pauchard and one anonymous reviewer helped greatly to improve the last version of this manuscript. This study was funded by the DAAD, DFG, and BMZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Zimmermann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 470 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, H., von Wehrden, H., Renison, D. et al. Shrub management is the principal driver of differing population sizes between native and invasive populations of Rosa rubiginosa L.. Biol Invasions 14, 2141–2157 (2012). https://doi.org/10.1007/s10530-012-0220-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-012-0220-2

Keywords

Navigation