Skip to main content
Log in

T-protein is present in large excess over the other proteins of the glycine cleavage system in leaves of Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

T-protein is present in large excess over the other proteins of the glycine cleavage system in leaves of Arabidopsis and therefore, exerts little control over the photorespiratory pathway.

T-protein is the aminomethyltransferase of the glycine cleavage multienzyme system (GCS), also known as the glycine decarboxylase complex, and essential for photorespiration and one-carbon metabolism. Here, we studied what effects varying levels of the GCS T-protein would have on GCS activity, the operation of the photorespiratory pathway, photosynthesis, and plant growth. To this end, we examined Arabidopsis thaliana T-protein overexpression lines with up to threefold higher amounts of leaf T-protein as well as one knockdown mutant with about 5% residual leaf T-protein and one knockout mutant. Overexpression did not alter photosynthetic CO2 uptake and plant growth, and the knockout mutation was lethal even in the non-photorespiratory environment of air enriched to 1% CO2. Unexpectedly in light of this very low T-protein content, however, the knockdown mutant was able to grow and propagate in normal air and displayed only some minor changes, such as a moderate glycine accumulation in combination with somewhat delayed growth. Neither overexpression nor the knockdown of T-protein altered the amounts of the other three GCS proteins, suggesting that the biosynthesis of the GCS proteins is not synchronized at this level. We also observed that the knockdown causes less T-protein mostly in leaf mesophyll cells, but not so much in the vasculature, and discuss this phenomenon in light of the dual involvement of the GCS and hence T-protein in plant metabolism. Collectively, this work shows that T-protein is present in large excess over the other proteins of the glycine cleavage system in leaves of Arabidopsis and therefore exerts little control over the photorespiratory pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GCS:

Glycine cleavage system

HC:

High-CO2 conditions

LC:

Low-CO2 conditions

SHMT:

Serine hydroxymethyltransferase

THF:

Tetrahydrofolate

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Bauwe H, Hagemann M, Fernie AR (2010) Photorespiration: players, partners and origin. Trends Plant Sci 15:330–336

    Article  CAS  PubMed  Google Scholar 

  • Blackwell RD, Murray AJS, Lea PJ (1990) Photorespiratory mutants of the mitochondrial conversion of glycine to serine. Plant Physiol 94:1316–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Gorlach J (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Douce R, Bourguignon J, Neuburger M, Rebeille F (2001) The glycine decarboxylase system: a fascinating complex. Trends Plant Sci 6:167–176

    Article  CAS  PubMed  Google Scholar 

  • Engel N, van den Daele K, Kolukisaoglu Ü, Morgenthal K, Weckwerth W, Pärnik T, Keerberg O, Bauwe H (2007) Deletion of glycine decarboxylase in Arabidopsis is lethal under non-photorespiratory conditions. Plant Physiol 144:1328–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel N, Eisenhut M, Qu N, Bauwe H (2008) Arabidopsis mutants with strongly reduced levels of the T-protein subunit of glycine decarboxylase. In: Allen JF, Gantt E, Golbeck JH, Osmond CB (eds) Photosynthesis. Energy from the Sun: 14th international conference of photosynthesis, vol 1. Springer, Dordrecht, pp 819–822

  • Engel N, Ewald R, Gupta KJ, Zrenner R, Hagemann M, Bauwe H (2011) The presequence of Arabidopsis serine hydroxymethyltransferase SHM2 selectively prevents import into mesophyll mitochondria. Plant Physiol 157:1711–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD (2014) Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510:298–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernie AR, Aharoni A, Willmitzer L, Stitt M, Tohge T, Kopka J, Carroll AJ, Saito K, Fraser PD, DeLuca V (2011) Recommendations for reporting metabolite data. Plant Cell 23:2477–2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Bloom AJ, Queval G, Noctor G (2009) Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol 60:455–484

    Article  CAS  PubMed  Google Scholar 

  • Hanson AD, Roje S (2001) One-carbon metabolism in higher plants. Annu Rev Plant Physiol Plant Mol Biol 52:119–137

    Article  CAS  PubMed  Google Scholar 

  • Häusler RE, Kleines M, Uhrig H, Hirsch H-J, Smets H (1999) Overexpression of phosphoenolpyruvate carboxylase from Corynebacterium glutamicum lowers the CO2 compensation point (Γ *) and enhances dark and light respiration in transgenic potato. J Exp Bot 50:1231–1242

    Article  Google Scholar 

  • Heineke D, Bykova N, Gardeström P, Bauwe H (2001) Metabolic response of potato plants to an antisense reduction of the P-protein of glycine decarboxylase. Planta 212:880–887

    Article  CAS  PubMed  Google Scholar 

  • Keech O, Dizengremel P, Gardeström P (2005) Preparation of leaf mitochondria from Arabidopsis thaliana. Physiol Plant 124:403–409

    Article  CAS  Google Scholar 

  • Kikuchi G, Motokawa Y, Yoshida T, Hiraga K (2008) Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proc Japan Acad Ser B Phys Biol Sci 84:246–263

    Article  CAS  Google Scholar 

  • Kisaki T, Tolbert NE (1970) Glycine as substrate for photorespiration. Plant Cell Physiol 11:247–258

    Article  CAS  Google Scholar 

  • Kopriva S, Turner SR, Rawsthorne S, Bauwe H (1995) T-protein of the glycine decarboxylase multienzyme complex: evidence for partial similarity to formyltetrahydrofolate synthetase. Plant Mol Biol 27:1215–1220

    Article  CAS  PubMed  Google Scholar 

  • Li R, Moore M, King J (2003) Investigating the regulation of one-carbon metabolism in Arabidopsis thaliana. Plant Cell Physiol 44:233–241

    Article  CAS  PubMed  Google Scholar 

  • Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396

    Article  CAS  PubMed  Google Scholar 

  • Motokawa Y, Kikuchi G (1974) Glycine metabolism by rat liver mitochondria. Reconstitution of the reversible glycine cleavage system with partially purified protein components. Arch Biochem Biophys 164:624–633

    Article  CAS  PubMed  Google Scholar 

  • Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998

    Article  CAS  PubMed  Google Scholar 

  • Neuburger M, Bourguignon J, Douce R (1986) Isolation of a large complex from the matrix of pea leaf mitochondria involved in the rapid transformation of glycine into serine. FEBS Lett 207:18–22

    Article  CAS  Google Scholar 

  • Oliver DJ (1994) The glycine decarboxylase complex from plant mitochondria. Annu Rev Plant Physiol Plant Mol Biol 45:323–337

    Article  CAS  Google Scholar 

  • Oliver DJ, Neuburger M, Bourguignon J, Douce R (1990) Interaction between the component enzymes of the glycine decarboxylase multienzyme complex. Plant Physiol 94:833–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer AC, Egan JB, Shearwin KE (2011) Transcriptional interference by RNA polymerase pausing and dislodgement of transcription factors. Transcription 2:9–14

    Article  PubMed  Google Scholar 

  • Rajinikanth M, Harding SA, Tsai CJ (2007) The glycine decarboxylase complex multienzyme family in Populus. J Exp Bot 58:1761–1770

    Article  CAS  PubMed  Google Scholar 

  • Rebeille F, Neuburger M, Douce R (1994) Interaction between glycine decarboxylase, serine hydroxymethyltransferase and tetrahydrofolate polyglutamates in pea leaf mitochondria. Biochem J 302:223–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagers RD, Gunsalus IC (1961) Intermediary metabolism of Diplococcus glycinophilus. I. Glycine cleavage and one-carbon interconversion. J Bacteriol 81:541–549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schjoerring JK, Mäck G, Nielsen KH, Husted S, Suzuki A, Driscoll S, Boldt R, Bauwe H (2006) Antisense reduction of serine hydroxymethyltransferase results in diurnal displacement of NH4 + assimilation in leaves of Solanum tuberosum. Plant J 45:71–82

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD (1988) Estimating the rate of photorespiration in leaves. Physiol Plant 73:147–152

    Article  CAS  Google Scholar 

  • Simkin AJ, Lopez-Calcagno PE, Davey PA, Headland LR, Lawson T, Timm S, Bauwe H, Raines CA (2017) Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose 1,6-bisphosphate aldolase and the photorespiratory glycine decarboxylase H-protein increases CO2 assimilation, vegetative biomass and seed yield in Arabidopsis. Plant Biotechnol J 15:805–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockhaus J, Schell J, Willmitzer L (1989) Correlation of the expression of the nuclear photosynthetic gene ST-LS1 with the presence of chloroplast. EMBO J 8:2445–2451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timm S, Florian A, Arrivault S, Stitt M, Fernie AR, Bauwe H (2012) Glycine decarboxylase controls photosynthesis and plant growth. FEBS Lett 586:3692–3697

    Article  CAS  PubMed  Google Scholar 

  • Timm S, Florian A, Wittmiss M, Jahnke K, Hagemann M, Fernie AR, Bauwe H (2013) Serine acts as a metabolic signal for the transcriptional control of photorespiration-related genes in Arabidopsis. Plant Physiol 162:379–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timm S, Wittmiss M, Gamlien S, Ewald R, Florian A, Frank M, Wirtz M, Hell R, Fernie AR, Bauwe H (2015) Mitochondrial dihydrolipoyl dehydrogenase activity shapes photosynthesis and photorespiration of Arabidopsis thaliana. Plant Cell 27:1968–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vauclare P, Diallo N, Bourguignon J, Macherel D, Douce R (1996) Regulation of the expression of the glycine decarboxylase complex during pea leaf development. Plant Physiol 112:1523–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker JL, Oliver DJ (1986) Glycine decarboxylase multienzyme complex. Purification and partial characterization from pea leaf mitochondria. J Biol Chem 261:2214–2221

    CAS  PubMed  Google Scholar 

  • Waller JC, Alvarez S, Naponelli V, Lara-Nuñez A, Blaby IK, Da Silva V, Ziemak MJ, Vickers TJ, Beverley SM, Edison AS, Rocca JR, Gregory JF, de Crécy-Lagard V, Hanson AD (2010) A role for tetrahydrofolates in the metabolism of iron-sulfur clusters in all domains of life. Proc Natl Acad Sci USA 107:10412–10417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waller JC, Ellens KW, Alvarez S, Loizeau K, Ravanel S, Hanson AD (2012) Mitochondrial and plastidial COG0354 proteins have folate-dependent functions in iron-sulphur cluster metabolism. J Exp Bot 63:403–411

    Article  CAS  PubMed  Google Scholar 

  • Wiludda C, Schulze S, Gowik U, Engelmann S, Koczor M, Streubel M, Bauwe H, Westhoff P (2012) Regulation of the photorespiratory GLDPA gene in C4 Flaveria: an intricate interplay of transcriptional and posttranscriptional processes. Plant Cell 24:137–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wingler A, Lea PJ, Leegood RC (1997) Control of photosynthesis in barley plants with reduced activities of glycine decarboxylase. Planta 202:171–178

    Article  CAS  Google Scholar 

  • Wingler A, Quick WP, Bungard RA, Bailey KJ, Lea PJ, Leegood RC (1999) The role of photorespiration during drought stress: an analysis utilizing barley mutants with reduced activities of photorespiratory enzymes. Plant Cell Environ 22:361–373

    Article  CAS  Google Scholar 

  • Winzer T, Heineke D, Bauwe H (2001) Growth and phenotype of potato plants expressing an antisense gene of P-protein of glycine decarboxylase under control of a promoter with preference for the mesophyll. Ann Appl Biol 138:9–15

    Article  CAS  Google Scholar 

  • Woody ST, Austin-Phillips S, Amasino RM, Krysan PJ (2007) The WiscDsLox T-DNA collection: an arabidopsis community resource generated by using an improved high-throughput T-DNA sequencing pipeline. J Plant Res 120:157–165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Piotr Bociag and Kathrin Jahnke (both Rostock) for technical assistance and the Nottingham Arabidopsis Stock Centre for the T-DNA insertional lines. This work was financially supported by the Deutsche Forschungsgemeinschaft (Research Unit FOR 1186 Promics, BA 1177/12-2 and FE 552/10-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Bauwe.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timm, S., Giese, J., Engel, N. et al. T-protein is present in large excess over the other proteins of the glycine cleavage system in leaves of Arabidopsis. Planta 247, 41–51 (2018). https://doi.org/10.1007/s00425-017-2767-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2767-8

Keywords

Navigation