Skip to main content
Log in

An Analytical Method for Predicting Temperature Rise Due to Multi-body Thermal Interaction in Deformation Processing

  • Exploring the Relationships Between Plastic Deformation and Heat
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Thermal effects play a central role in determining the microstructure and mechanical properties during deformation processing. Unlike in directed energy processes, such as laser cladding or welding, prediction of temperature fields in deformation processing requires consideration of multiscale heat generation and heat transfer phenomena between the tool, workpiece, and surrounding lubricant. In this work, we develop an analytical method to evaluate the temperature rise in a workpiece as it interacts simultaneously with a tool and lubricant. The method operates on multiple length scales and partitions the generated heat using suitable temperature-matching principles. We demonstrate the utility of the scheme by analyzing two deformation processing operations—surface grinding and friction stir processing—and a problem in four-body wear, and compare the results with infrared thermography measurements. Final temperature predictions match well with experimentally measured values. Given its analytical nature, our scheme enables easy evaluation of parametric effects, thus distinguishing it from commonly used finite element techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.A. Backofen, Metall. Trans., 4(12), 2679 (1973)

    Article  Google Scholar 

  2. E. Loewen and M. Shaw, Trans. ASME, 76(2), 217 (1954)

    Google Scholar 

  3. J. Weiner, Trans. ASME, 77, 1331 (1955)

    Google Scholar 

  4. C. Genevois, A. Deschamps, A. Denquin, and B. Doisneau-Cottignies, Acta Mater., 53(8), 2447 (2005)

    Article  Google Scholar 

  5. N. Abukhshim, P. Mativenga, and M.A. Sheikh, Int. J. Mach. Tools Manuf., 46(7–8), 782 (2006)

    Article  Google Scholar 

  6. J. Sölter and M. Gulpak, CIRP Ann., 61(1), 87 (2012)

    Article  Google Scholar 

  7. C. Mao, Z. Zhou, Y. Ren, and B. Zhang, Mater. Manuf. Process., 25(6), 399 (2010)

    Article  Google Scholar 

  8. T. Eagar, N. Tsai, et al., Weld. J. (Miami, FL, U. S.), 62(12), 346 (1983)

    Google Scholar 

  9. E. Toyserkani, A. Khajepour, and S.F. Corbin, Laser Cladding (CRC:, Boca Raton, 2004), pp. 86–146

    Book  Google Scholar 

  10. A. Hoadley and M. Rappaz, Metall. Trans. B, 23(5), 631 (1992)

    Article  Google Scholar 

  11. S. Cerni, A. Weinstein, and C. Zorowski, Iron Steel Eng. Year Book, 40(9), 717 (1963)

    Google Scholar 

  12. S. Malkin, J. Appl. Metalwork, 3(2), 95 (1984)

    Article  Google Scholar 

  13. D. Rosenthal, Trans. ASME, 68, 849 (1946)

    Google Scholar 

  14. W. Rowe, S. Black, B. Mills, M. Morgan, and H. Qi, Proc. R. Lond. Soc. A, 453(1960), 1083 (1997)

    Article  Google Scholar 

  15. Y. Ju, T. Farris, and S. Chandrasekar, J. Tribol., 120, 789 (1998)

    Article  Google Scholar 

  16. C. Guo and S. Malkin, J. Eng. Ind., 117, 55 (1995)

    Article  Google Scholar 

  17. H. Blok, Proc. Inst. Mech. Eng. Part J, 2, 222 (1937)

    Google Scholar 

  18. H. Blok, Appl. Sci. Res. Sect. A, 5(2–3), 151 (1955)

    Article  Google Scholar 

  19. J. Jaeger, J. Proc. R. Soc. N. S. W., 76, 203 (1942)

    Google Scholar 

  20. H. Carlsaw, J. Jaeger, Conduction of Heat in Solids, 2nd edn. (Oxford: Clarendon, 1959)

    Google Scholar 

  21. F.P. Bowden, D. Tabor, Friction: An Introduction to Tribology (Melbourne: Krieger, 1973)

    Google Scholar 

  22. E.H. Smith and R.D. Arnell, Tribol. Lett., 55(2), 315 (2014)

    Article  Google Scholar 

  23. J. Archard, Wear, 2(6), 438 (1959)

    Article  Google Scholar 

  24. S. Schaaf, Q. Appl, Math., 5(1), 107 (1947)

    Article  Google Scholar 

  25. B. Ackroyd, N. Akcan, P. Chhabra, K. Krishnamurthy, V. Madhavan, S. Chandrasekar, W. Compton, and T. Farris, Proc. Inst. Mech. Eng. Part B, 215(4), 493 (2001)

    Article  Google Scholar 

  26. B. Ackroyd, S. Chandrasekar, and W. Compton, J. Tribol., 125(3), 649 (2003)

    Article  Google Scholar 

  27. R. Holm, J. Appl. Phys., 19, 361 (1948)

    Article  Google Scholar 

  28. Y. Waddad, V. Magnier, P. Dufrenoy, and G. Saxce, Int. J. Heat Mass Transf., 137, 1167 (2019)

    Article  Google Scholar 

  29. X. Liu, D. Surblys, Y. Kawagoe, A.R.B. Saleman, H. Matsubara, G. Kikugawa, and T. Ohara, Int. J. Heat Mass Transf., 147, 118949 (2020)

    Article  Google Scholar 

  30. H. Blok, Wear, 6, 483 (1963)

    Article  Google Scholar 

  31. F. Ling, J. Lubr. Technol., 16, 397 (1969)

    Article  Google Scholar 

  32. J. Greenwood, Wear, 150, 153 (1991)

    Article  Google Scholar 

  33. J. Barber, Int. J. Heat Mass Transf., 13, 857 (1970)

    Article  Google Scholar 

  34. X. Tian and F. Kennedy Jr., J. Tribol., 116, 167 (1994)

    Article  Google Scholar 

  35. X. Tian and F. Kennedy Jr., J. Tribol., 115, 1 (1993)

    Article  Google Scholar 

  36. H.S. Dhami, P.R. Panda, D.P. Mohanty, A. Udupa, J.B. Mann, K. Viswanathan, and S. Chandrasekar, in TMS 2021, Annu. Meet. Exhib., Suppl. Proc., 150th (Springer, 2021), pp. 921–931

  37. G.I. Taylor and H. Quinney, Proc. R. Soc. Lond. Ser. A, 143(849), 307 (1934)

    Article  Google Scholar 

  38. T. Kato and H. Fujii, J. Manuf. Sci. Eng., 122(2), 297 (2000)

    Article  Google Scholar 

  39. M. Morgan, W. Rowe, S. Black, and D. Allanson, Proc. Inst. Mech. Eng. Part B, 212(8), 661 (1998)

    Article  Google Scholar 

  40. K. Takazawa, Ind. Diamond Rev., 32, 143 (1972)

    Google Scholar 

  41. D. Scott and G. Mills, Wear, 24(2), 235 (1973)

    Article  Google Scholar 

  42. T. Christman and P.G. Shewmon, Wear, 54(1), 145 (1979)

    Article  Google Scholar 

  43. J.P. Holman, Heat Transfer (New Delhi: Tata McGraw-Hill, 2009), 10th edn., pp. 650–652

  44. D.D. Fuller, AIP Handbook (New York: McGraw-Hill, 1972), p. 45

    Google Scholar 

  45. S. Lim, M. Ashby, and J. Brunton, Acta Mater., 35(6), 1343 (1987)

    Article  Google Scholar 

  46. T. Reddyhoff, R.J. Underwood, R.S. Sayles, and H.A. Spikes, Surf. Topogr.: Metrol. Prop., 6(3), 034013 (2018)

    Article  Google Scholar 

  47. Z. Ma, Metall. Mater. Trans. A, 39(3), 642 (2008)

    Article  Google Scholar 

  48. C. Chen, R. Kovacevic, Int. J. Mach. Tools Manuf., 43(13), 1319 (2003)

    Article  Google Scholar 

  49. R.S. Mishra and Z. Ma, Mater. Sci. Eng. R, 50(1–2), 1 (2005)

    Article  Google Scholar 

  50. H. Schmidt, J. Hattel, and J. Wert, Modell. Simul. Mater. Sci. Eng., 12(1), 143 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from the Indian Institute of Science, Bangalore. Financial support from the Science and Engineering Research Board (SERB), Govt. of India under Grant CRG/2018/002058 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koushik Viswanathan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Some Standard Temperature Models

Appendix A Some Standard Temperature Models

The starting point for solutions of the 3D heat conduction equation is the corresponding Green’s function, defined as the steady state temperature distribution in a moving half-space (velocity V along the x-direction) when its surface heated by a continuous point source of strength \(\tilde{q}\) (in watts) at the origin of coordinates:

$$ T_{{ss}} = \frac{{\tilde{q}}}{{2\pi K}}\left( {\frac{1}{r}} \right)\exp \left( { - \frac{V}{{2\alpha }}(r - x)} \right) $$
(17)

where \(\alpha , K\) are the thermal diffusivity and conductivity of the material. Alternatively, the heat flux per unit time \(\tilde{q}\)may also be assumed to act at the point \((x^\prime ,y^\prime ,0)\) instead of origin, in which case (x,y) must be replaced by \((x-x^\prime )\) and \((y-y^\prime )\), respectively. Additionally, when the source is distributed over an area, one can appeal to linear superposition to write down the temperature distribution as:

$$ T(x,y,z) = \frac{1}{{2\pi K}}\int {\int {\frac{{\hat{q}{\text{d}}x^{\prime}{\text{d}}y^{\prime}}}{s}} } \exp \left( { - \frac{V}{{2\alpha }}(s - (x - x^{\prime}))} \right) $$
(18)

where \(s=\sqrt{(x-x')^2+(y-y')^2+z^2}\) and \(\hat{q}\) is now the heat intensity (W/m\(^2\)). Now, depending on the nature of heat distribution we can employ a suitable distribution for \(\hat{q}\) and solve the integral in Eq. 18 to obtain temperatures in the material half-space. Three distributions are commonly employed [20]:

  1. 1.

    Uniform square distribution, where \(\hat{q}(x^\prime ,y^\prime ) = \hat{q}_0 = \text {constant}\) and distributed over a square of side l, so that Eq. 18 can be integrated over non-dimensionalized variables. The equivalent temperature rise (non-dimensionalized) can be computed as:

    $$ \begin{aligned} & \theta \left({\frac{x}{l},\frac{y}{l},\frac{z}{l}} \right) \\ & \quad = \frac{{TK}}{{\hat{q}l}} = \frac{1}{{2\pi }}\int_{{ - 1}}^{1} {\int_{{ - 1}}^{1} {\frac{{\exp ( - Pe(\sqrt {\xi ^{\prime 2} + \eta ^{\prime 2} } - \xi ^{\prime}))}}{{\sqrt {\xi ^{\prime 2} + \eta ^{\prime 2} } }}} } {\text{d}}\xi ^{\prime}{\text{d}}\eta ^{\prime} \\ \end{aligned} $$
    (19)

    where \(\eta =\dfrac{y'}{l}\). The non-dimensional Peclet number \(Pe = Vl/2\alpha \) is a measure of how quickly the heat is being conducted away by the moving workpiece. For various Pe, this integral can be solved using simple numerical techniques to obtain the steady-state temperature distribution in the workpiece.

  2. 2.

    Uniform circular distribution: If \(\hat{q}= \hat{q}_0\) as before, but acts on a circular area of radius R, we convert the integral in Eq. 18 to angular coordinates \(\psi , s\), with \(\psi \) varying from 0 to \(\pi \). The resulting integral can again be evaluated in non-dimensional form, with the resultant (non-dimensional) temperature distribution.

    $$ \begin{aligned} & \theta \left( {\frac{x}{l},\frac{y}{l},\frac{z}{l}} \right) \\ & = \frac{{TK}}{{\hat{q}l}} = \frac{1}{{4\pi }}\int_{0}^{\pi } {} \\ & \frac{{[\exp ( - Pe[\sqrt {1 - \xi ^{2} \sin ^{2} \psi } + \xi \cos \psi ](1 - \cos \psi )) - 1]}}{{Pe(1 - \cos \psi )}}d\psi \\ \end{aligned} $$
    (20)

    where \(Pe=\frac{V R}{2 \alpha }\) is again the Peclet number and \(\xi =r/R\). This expression can be integrated using a simple numerical scheme to obtain the final temperature distribution.

  3. 3.

    Continuous strip/band source: Instead of the square or circular sources, one often has to make an approximation that the source is infinite in one dimension. This is the case, for instance, when the width of the workpiece is much larger than the depth of interaction with the tool. For such situations, Eq. 18 may first be integrated with respect to \(y^\prime \) from 0 to \(\infty \) resulting in a line heat source. These may then be superimposed along the \(x^\prime \) direction to obtain temperature distribution for a strip heat source

    $$ \begin{aligned} & T(x,y,z) \\ & = \int_{{ - l}}^{{ + l}} {\frac{{\bar{q}(x^{\prime } )}}{{\pi K}}} \exp \left( {\frac{{V(x - x^{\prime})}}{{2\alpha }}} \right) \\ & \quad \times K_{0} \left( {\frac{{V|x - x^{\prime}|}}{{2\alpha }}} \right)dx^{\prime} \\ \end{aligned} $$
    (21)

    where now \(\bar{q}\) is the heat intensity per unit length (W/m) of a band heat source that is infinite along y axis and distributed along the x-axis; \(K_0\) is the modified Bessel function of second kind of 0th order.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhami, H.S., Panda, P.R., Mohanty, D.P. et al. An Analytical Method for Predicting Temperature Rise Due to Multi-body Thermal Interaction in Deformation Processing. JOM 74, 513–525 (2022). https://doi.org/10.1007/s11837-021-05088-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05088-w

Navigation