Skip to main content
Log in

Electrochemical preparation of titanium and titanium–copper alloys with K2Ti6O13 in KF–KCl melts

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

To investigate the electrodeposition mechanism of Ti4+, electrochemistry experiments were conducted using a KF–KCl–K2Ti6O13 molten salt at a Cu electrode at 950 °C. Transient electrochemical techniques such as cyclic voltammetry (CV) and square-wave voltammetry were used in this study. The main phases and compositions of the product were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectrometry (EDS). The resulting product has the structure of metallic Ti. The results indicate that Ti4+ is reduced to metallic Ti by a two-step mechanism, corresponding to the reduction pathway: Ti4+ → Ti2+ → Ti. Moreover, Cu–Ti alloy could be obtained by the potentiostatic electrolysis at a Cu electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jahedi M, Zahiri S, Gulizia S. Direct manufacturing of titanium parts by cold spray. Mater Sci Forum. 2009;618–619:505.

    Article  Google Scholar 

  2. Ning XH, Asheim H, Ren HF, Jiao SQ, Zhu HM. Preparation of titanium deposit in chloride melts. Metall Mater Trans B. 2011;42(6):1181.

    Article  Google Scholar 

  3. Wan MP, Zhao YQ, Zeng WD. Phase transformation kinetics of Ti-1300 alloy during continuous heating. Rare Met. 2015;34(4):233.

    Article  Google Scholar 

  4. Wang YL, Hui SX, Liu R, Ye WJ, Yu Y, Kayumov R. Dynamic response and plastic deformation behavior of Ti–5Al–2.5Sn ELI and Ti–8Al–1Mo–1V alloys under high-strain rate. Rare Met. 2014;33(2):127.

    Article  Google Scholar 

  5. Boccaccini AR, Gerhardt LC, Rebeling S, Blaker JJ. Fabrication, characterisation and assessment of bioactivity of poly (D, L lactid acid) (PDLLA)/TiO2 nanocomposite films. Compos Part A: Appl Sci Manuf. 2005;36(6):721.

    Article  Google Scholar 

  6. Qu W, Wlodarski W, Austin M. Microfabrication and reliability study of sapphire based Ti/Pt-electrodes for thin-film gas sensor applications. Microelectron J. 2000;31(7):561.

    Article  Google Scholar 

  7. Wang B, Liu KR, Chen JS. Reaction mechanism of preparation of titanium by electro-deoxidation in molten salt. Trans Nonferrous Met Soc China. 2011;21(10):2327.

    Article  Google Scholar 

  8. Kroll W. The production of ductile titanium. Trans Am Electrochem Soc. 1940;78(1):35.

    Article  Google Scholar 

  9. Fray DJ, Chen GZ. Reduction of titanium and other metal oxides using electrodeoxidation. Mater Sci Technol. 2002;20(3):295.

    Article  Google Scholar 

  10. Chen GZ, Fray DJ, Farthing TW. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature. 2000;407(6802):361.

    Article  Google Scholar 

  11. Nagesh CR, Ramachandran CS. Electrochemical process of titanium extraction. Trans Nonferrous Met Soc China. 2007;17(2):429.

    Article  Google Scholar 

  12. Xu Q, Deng LQ, Wu Y, Ma T. A study of cathode improvement for electro- deoxidation of Nb2O5 in a eutectic CaCl2-NaCl melt at 1073 K. J. Alloys Compd. 2005;396(1–2):288.

    Article  Google Scholar 

  13. Suzuki RO. Calciothermic reduction of TiO2 and in situ electrolysis of CaO in the molten CaCl2. J Phys Chem Solids. 2005;66(2):461.

    Article  Google Scholar 

  14. Jiao SQ, Zhu HM. Electrolysis of Ti2CO solid solution prepared by TiC and TiO2. J Alloys Compd. 2007;438(1):243.

    Article  Google Scholar 

  15. Wang QY, Li Y, Jiao SQ, Zhu HM. Producing metallic titanium through electro-refining of titanium nitride anode. Electrochem Commun. 2013;2013(35):135.

    Article  Google Scholar 

  16. Zhang LL, Wang SB, Jiao SQ, Huang K, Zhu HM. Electrochemical synthesis of titanium oxycarbide in a CaCl2 based molten salt. Electrochim Acta. 2012;75:357.

    Article  Google Scholar 

  17. Chen GS, Masazumi O, Takeo O. Electrochemical studies of titanium ions (Ti4+) in equimolar KCl-NaCl molten salts with 1 wt% K2TiF6. Electrochim Acta. 1987;32(11):1637.

    Article  Google Scholar 

  18. Wurm JG, Gravel L. The mechanism of titanium production by electrolysis of fused halide baths containing titanium salts. J Electrochem Soc. 1957;104(5):301.

    Article  Google Scholar 

  19. Polyakov LP, Strangrit PT, Polyakov EG. Electrochemical study of titanium in chloride-fluoride melts. Electrochim Acta. 1986;31(2):159.

    Article  Google Scholar 

  20. Zou XL, Lu XG, Zhou ZF, Li CH. Direct electrosynthesis of Ti5Si3/TiC composites from their oxides/C precursors in molten calcium chloride. Electrochem Commun. 2012;21:9.

    Article  Google Scholar 

  21. Mukhopadhyay I, Aravinda CL, Freyland W. Electrodeposition of Ti from TiCl4 in the ionic liquid l-methyl-3-butyl-imidazolium bis (trifluoro methyl sulfone) imide at room temperature: study on phase formation by in situ electrochemical scanning tunneling microscopy. Electrochim Acta. 2005;50(6):1275.

    Article  Google Scholar 

  22. Castrillejo Y, Bermejo MR, Barrado AI, Pardo R, Barrado E, Martinez AM. Electrochemical behaviour of dysprosium in the eutectic LiCl–KCl at W and Al electrodes. Electrochim Acta. 2005;50(10):2047.

    Article  Google Scholar 

  23. Castrillejo Y, Bermejo MR, Barrado E, Martinez AM. Electrochemical behaviour of erbium in the eutectic LiCl–KCl at W and Al electrodes. Electrochim Acta. 2006;51(10):1941.

    Article  Google Scholar 

  24. Brisard GM, Zenati E. Underpotential deposition of lead on copper (111) -a study using a single-crystal rotating-ring electrode and ex situ low- energy- electron diffraction and auger-electron spectroscopy. Langumuir. 1995;11(6):2221.

    Article  Google Scholar 

  25. Ge M, Gewirth AA. In situ atomic force microscopy of under-and over potentially deposited cadmium on Cu(111). Surf Sci. 1994;324(2):140.

    Google Scholar 

  26. Bard AJ, Faulkner LR. Electrochemical Methods: fundamentals and applications. New York: Wiley; 1980. 162.

    Google Scholar 

  27. Massot L, Chamelot P, Bouyer F, Taxil P. Electrodeposition of carbon films from molten alkaline fluoride media. Electrochim Acta. 2002;47(12):1949.

    Article  Google Scholar 

  28. Polyakova LP, Taxil P, Polyakov EG. Electrochemical behaviour and codeposition of titanium and niobium in chloride-fluoride melts. J Alloys Compd. 2003;359(1–2):244.

    Article  Google Scholar 

  29. Christie JH, Turner JA, Osteryoung RA. Square wave voltammetry at the dropping mercury electrode: theory. Anal Chem. 1977;49(13):1899.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the State Key Development Program for Basic Research of China (973 Program, Grant No. 2013CB632606-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Wu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Wang, YW., Peng, JP. et al. Electrochemical preparation of titanium and titanium–copper alloys with K2Ti6O13 in KF–KCl melts. Rare Met. 36, 527–532 (2017). https://doi.org/10.1007/s12598-016-0708-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0708-5

Keywords

Navigation