Rofo 2022; 194(03): 281-290
DOI: 10.1055/a-1586-3023
Pediatric Radiology

Effectiveness of Chest CT in Children: CT Findings in Relation to the Clinical Question

Wertigkeit der Thorax-CT bei Kindern: Befunde in Abhängigkeit der klinischen Fragestellung
Diagnostic and Interventional Radiology, Universitätsklinikum Tübingen, Tübingen, Germany
,
Ilias Tsiflikas
Diagnostic and Interventional Radiology, Universitätsklinikum Tübingen, Tübingen, Germany
,
Diagnostic and Interventional Radiology, Universitätsklinikum Tübingen, Tübingen, Germany
,
Sabine Hess
Diagnostic and Interventional Radiology, Universitätsklinikum Tübingen, Tübingen, Germany
,
Sergios Gatidis
Diagnostic and Interventional Radiology, Universitätsklinikum Tübingen, Tübingen, Germany
,
Jürgen F. Schaefer
Diagnostic and Interventional Radiology, Universitätsklinikum Tübingen, Tübingen, Germany
› Author Affiliations

Abstract

Purpose To estimate the effectiveness and efficiency of chest CT in children based on the suspected diagnosis in relation to the number of positive, negative, and inconclusive CT results.

Materials and Methods In this monocentric retrospective study at a university hospital with a division of pediatric radiology, 2019 chest CT examinations (973 patients; median age: 10.5 years; range: 2 days to 17.9 years) were analyzed with regards to clinical data, including the referring department, primary questions or suspected diagnosis, and CT findings. It was identified if the clinical question was answered, whether the suspected diagnosis was confirmed or ruled out, and if additional findings (clinically significant or minor) were detected.

Results The largest clinical subgroup was the hematooncological subgroup (n = 987), with frequent questions for inflammation/pneumonia (66 % in this subgroup). Overall, CT provided conclusive results in 97.6 % of all scans. In 1380 scans (70 %), the suspected diagnosis was confirmed. In 406/2019 cases (20 %), the CT scan was negative also in terms of an additional finding. In 8 of 9 clinical categories, the proportion of positive results was over 50 %. There were predominantly negative results (110/179; 61 %) in pre-stem cell transplant evaluation. In the subgroup of trauma management, 81/144 exams (57 %) showed positive results, including combined injuries (n = 23). 222/396 (56 %) of all additional findings were estimated to be clinically significant.

Conclusion In a specialized center, the effectiveness of pediatric chest CT was excellent when counting the conclusive results. However, to improve efficiency, the clinical evaluation before imaging appears crucial to prevent unnecessary CT examinations.

Key Points:

  • Pediatric chest CT in specialized centers has a high diagnostic value.

  • CT identifies relevant changes besides the working hypothesis in clinically complex situations.

  • Pre-CT clinical evaluation is crucial, especially in the context of suspected pneumonia.

Citation Format

  • Esser M, Tsiflikas I, Kraus MS et al. Effectiveness of Chest CT in Children: CT Findings in Relation to the Clinical Question. Fortschr Röntgenstr 2022; 194: 281 – 290

Zusammenfassung

Ziel Abschätzung der klinischen Wertigkeit der Thorax-CT bei Kindern auf Grundlage der Verdachtsdiagnose und positiven, negativen und inkonklusiven CT-Befunde.

Material und Methoden In dieser retrospektiven monozentrischen Studie an einer Universitätsklinik mit Abteilung für Kinderradiologie wurden 2019 Thorax-CTs (973 Patienten; Altersmedian 10,5 Jahre; Spannweite: 2 Tage bis 17,9 Jahre) hinsichtlich klinischer Daten analysiert, einschließlich Zuweiserinformationen, primärer Fragestellungen oder Verdachtsdiagnosen und CT-Befunde. Es wurde festgehalten, ob die klinische Fragestellung beantwortet wurde, ob die Verdachtsdiagnose bestätigt oder ausgeschlossen wurde und ob Nebenbefunde (klinisch signifikant oder irrelevant) festgestellt wurden.

Ergebnisse Die größte klinische Untergruppe bestand aus hämatoonkologischen Fällen (n = 987) mit häufiger Fragestellung eines pulmonalen Infektfokus (66 % in dieser Gruppe). Insgesamt lieferte die CT in 97,6 % aller CTs konklusive Resultate. In 1380 CTs (70 %) wurde die Verdachtsdiagnose bestätigt. In 406/2019 Fällen (20 %) wurde weder ein primärer Befund noch ein Nebenbefund festgestellt. In 8 von 9 klinischen Kategorien war der Anteil der positiven Ergebnisse über 50 %. Vorwiegend negative Ergebnisse (110/179; 61 %) traten bei Patienten vor Stammzelltransplantation auf. In der Gruppe der Traumapatienten lieferten 81/144 der Untersuchungen (57 %) positive Ergebnisse, einschließlich mehrerer kombinierter Verletzungen (n = 23). 222/396 aller Nebenbefunde (56 %) wurden als klinisch relevant eingestuft.

Schlussfolgerung Die pädiatrische Thorax-CT in spezialisierten Zentren hat eine hohe diagnostische Aussagekraft im Hinblick auf konklusive Untersuchungsergebnisse. Zur Verbesserung der Effizienz der Methode und Prävention unnötiger CT-Untersuchungen ist die klinische Beurteilung prä-CT entscheidend.

Kernaussagen:

  • Die pädiatrische Thorax-CT in spezialisierten Zentren hat eine hohe diagnostische Aussagekraft.

  • Die CT kann in klinisch komplexen Situationen relevante Veränderungen neben der Arbeitshypothese erkennen.

  • Die klinische Beurteilung prä-CT ist unentbehrlich, insbesondere bei Verdacht auf eine Pneumonie.



Publication History

Received: 12 April 2021

Accepted: 27 July 2021

Article published online:
14 October 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Donnelly LF, Lucaya J, Strife JL. Pediatric chest imaging. Chest imaging in infants and children. In: CT of acute pulmonary disease: infection, infarction, and trauma. Berlin, Heidelberg: Springer; 2008: 145-164
  • 2 Paterson A. Imaging evaluation of congenital lung abnormalities in infants and children. Radiol Clin North Am 2005; 43: 303-323
  • 3 Lobo L, Antunes D. Chest CT in infants and children. Eur J Radiol 2013; 82: 1108-1117
  • 4 Haynes B. Can it work? Does it work? Is it worth it? The testing of healthcare interventions is evolving. BMJ 1999; 319: 652-653
  • 5 Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med 2007; 357: 2277-2284
  • 6 Shahi V, Brinjikji W, Cloft HJ. et al. Trends in CT Utilization for Pediatric Fall Patients in US Emergency Departments. Acad Radiol 2015; 22: 898-903
  • 7 Eren B, Karagoz Guzey F. Is spinal computed tomography necessary in pediatric trauma patients?. Pediatr Int 2020; 62: 29-35
  • 8 Ohana O, Soffer S, Zimlichman E. et al. Overuse of CT and MRI in paediatric emergency departments. Br J Radiol 2018; 91: 20170434
  • 9 Holl EM, Marek AP, Nygaard RM. et al. Use of Chest Computed Tomography for Blunt Pediatric Chest Trauma: Does It Change Clinical Course?. Pediatr Emerg Care 2020; 36: 81-86
  • 10 Klang E, Beytelman A, Greenberg D. et al. Overuse of Head CT Examinations for the Investigation of Minor Head Trauma: Analysis of Contributing Factors. Am Coll Radiol 2017; 14: 171-176
  • 11 Voss SD, Cairo MS. Surveillance imaging in pediatric lymphoma. Pediatr Radiol 2019; 49: 1565-1573
  • 12 Gilchrist FJ, Buka R, Jones M. et al. Clinical indications and scanning protocols for chest CT in children with cystic fibrosis: a survey of UK tertiary centres. BMJ Paediatr Open 2018; 2: e000367
  • 13 Federico SM, Brady SL, Pappo A. et al. The role of chest computed tomography (CT) as a surveillance tool in children with high-risk neuroblastoma. Pediatr Blood Cancer 2015; 62: 976-981
  • 14 Howe J, Fitzpatrick CM, Lakam DR. et al Routine repeat brain computed tomography in all children with mild traumatic brain injury may result in unnecessary radiation exposure. J Trauma Acute Care Surg 2014; 76: 292-295 ; discussion 295-296
  • 15 Esser M, Hess S, Teufel M. et al. Radiation Dose Optimization in Pediatric Chest CT: Major Indicators of Dose Exposure in 1695 CT Scans over Seven Years. Rofo 2018; 190: 1131-1140
  • 16 Martine RJ, Santangelo T, Colas L. et al. Radiation dose levels in pediatric chest CT: experience in 499 children evaluated with dual-source single-energy CT. Pediatr Radiol 2017; 47: 161-168
  • 17 Kunihiro Y, Tanaka N, Kawano R. et al. Differential diagnosis of pulmonary infections in immunocompromised patients using high-resolution computed tomography. Eur Radiol 2019; 29: 6089-6099
  • 18 Lee JJ, Chong PY, Lin CB. et al. High resolution chest CT in patients with pulmonary tuberculosis: characteristic findings before and after antituberculous therapy. Eur J Radiol 2008; 67: 100-104
  • 19 Andronikou S, Goussard P, Sorantin E. Computed tomography in children with community-acquired pneumonia. Pediatr Radiol 2017; 47: 1431-1440
  • 20 Junghanss C, Marr KA, Carter RA. et al. Incidence and outcome of bacterial and fungal infections following nonmyeloablative compared with myeloablative allogeneic hematopoietic stem cell transplantation: a matched control study. Biol Blood Marrow Transplant 2002; 8: 512-520
  • 21 Kasow KA, Krueger J, Srivastava DK. et al. Clinical utility of computed tomography screening of chest, abdomen, and sinuses before hematopoietic stem cell transplantation: the St. Jude experience. Biol Blood Marrow Transplant 2009; 15: 490-495
  • 22 Tiddens HAWM, Kuo W, van Straten M. et al. Paediatric lung imaging: the times they are a-changin’. Eur Respir Rev 2018; 28: 27
  • 23 Lee J, Sanchez TR, Zhang Y. et al. The role of high-resolution chest CT in the diagnosis of neuroendocrine cell hyperplasia of infancy – A rare form of pediatric interstitial lung disease. Respir Med Case Rep 2015; 16: 101-103
  • 24 Schaefer JF, Hector A, Schmidt K. et al. A semiquantitative MRI-Score can predict loss of lung function in patients with cystic fibrosis: Preliminary results. Eur Radiol 2018; 28: 74-84
  • 25 Fleischer S, Kraus MS, Gatidis S. et al. New severity assessment in cystic fibrosis: signal intensity and lung volume compared to LCI and FEV1: preliminary results. Eur Radiol 2020; 30: 1350-1358
  • 26 Kraus MS, Teufel M, Esser M. et al. Differing Pulmonary Structural Abnormalities Detected on Pulmonary MR Imaging in Cystic Fibrosis Patients with Varying Pancreatic Function. Rofo 2020; 192: 567-575
  • 27 Dournes G, Menut F, Macey J. et al. Lung morphology assessment of cystic fibrosis using MRI with ultra-short echo time at submillimeter spatial resolution. Eur Radiol 2016; 26: 3811-3820
  • 28 Westra SJ. The communication of the radiation risk from CT in relation to its clinical benefit in the era of personalized medicine: part 2: benefits versus risk of CT. Pediatr Radiol 2014; 44 (Suppl. 03) 525-533
  • 29 Holscher CM, Faulk LW, Moore EE. et al. Chest computed tomography imaging for blunt pediatric trauma: not worth the radiation risk. J Surg Res 2013; 184: 352-357
  • 30 Moore MA, Wallace EC, Westra SJ. Chest trauma in children: current imaging guidelines and techniques. Radiol Clin North Am 2011; 49: 949-968
  • 31 Esser M, Gatidis S, Teufel M. et al Contrast-Enhanced High-Pitch Computed Tomography in Pediatric Patients Without Electrocardiography Triggering and Sedation: Comparison of Cardiac Image Quality With Conventional Multidetector Computed Tomography. J Comput Assist Tomogr 2017; 41: 165-171