Skip to main content
Log in

Effect of Photoperiod Duration on Microcirculation in the Skin as Assessed Experimentally by Laser Doppler Flowmetry

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Effects of prolonged photoperiod (18 : 6 model) on the mechanisms regulating microcirculation in the skin were studied in experimental animals. Microcirculation was assessed using laser Doppler flowmetry. It was found that exposure to the prolonged photoperiod regime caused deregulation of blood flow in microvessels, diminishing the amplitudes of endothelial, neurogenic, and myogenic oscillations, and decreased tissue perfusion. The observed hemodynamic abnormalities became more pronounced with longer duration of exposure. Decreased perfusion and progressive impairment of the active factors that regulate microcirculation suggest that exposure to prolonged photoperiod has a negative effect on tissue perfusion, which may be a risk factor for development of cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. A. leGates, D. C. Fernandez, and S. Hattar, Nat. Rev. Neurosci. 15, 443 (2014). https://doi.org/10.1038/nrn3743

    Article  Google Scholar 

  2. J. Cedernaes, N. Waldeck, and J. Bass, Genes. Dev. 33, 1136 (2019).https://doi.org/10.1101/gad.328633.119

    Article  Google Scholar 

  3. A. Kalsbeek, I. F. Palm, S. E. la Fleur, F. A. J. L. Scheer, S. Perreau-Lenz, M. Ruiter, F. Kreier, C. Cailotto, and R. M. Buijs, J. Biol. Rhythms 21, 458 (2006).https://doi.org/10.1177/0748730406293854

    Article  Google Scholar 

  4. J. F. Duffy and C. A. Czeisler, Sleep. Med. Clin. 4, 165 (2009). https://doi.org/10.1016/j.jsmc.2009.01.004

    Article  Google Scholar 

  5. K. Man, A. Loudon, and A. Chawla, Science (Washington, DC, U. S.) 354, 999 (2016).https://doi.org/10.1126/science.aah4966

    Article  ADS  Google Scholar 

  6. C. Scheiermann, J. Gibbs, L. Ince, and A. Loudon, Nat. Rev. Immunol. 18, 423 (2018).https://doi.org/10.1038/s41577-018-0008-4

    Article  Google Scholar 

  7. J. O. Early and A. M. Curtis, Seminars in Immunol. Immunometab. 28, 478 (2016).https://doi.org/10.1016/j.smim.2016.10.006

    Article  Google Scholar 

  8. V. N. Anisimov, I. A. Vinogradova, A. V. Bukalev, et al., Vopr. Onkol. 60 (2), 15 (2014).

    Google Scholar 

  9. V. A. Snezhinskii and N. F. Pobivantseva, Zh. Grodn. Med. Univ., No. 1, 9 (2013).

  10. C. E. Koch, B. Leinweber, B. C. Drengberg, et al., Neurobiol. Stress. 6, 57 (2017).https://doi.org/10.1016/j.ynstr.2016.09.001

    Article  Google Scholar 

  11. K. I. Zhurkin, O. V. Zlobina, A. N. Ivanov, et al., Tromboz, Gemostaz Reol. 3 (67), 164 (2016).

    Google Scholar 

  12. P. Poredos and M. K. Jezovnik, Angiology 7, 564 (2017).

    Google Scholar 

  13. A. N. Ivanov, O. V. Zlobina, K. I. Zhurkin, et al., Region. Krovoobr. Mikrotsirk. 16 (1), 43 (2017).https://doi.org/10.24884/1682-6655-2017-16-1-43-48

    Article  Google Scholar 

  14. O. V. Zlobina, S. S. Pakhomii, I. O. Bugaeva, G. N. Mas-lyakova, and A. N. Ivanov, Vestn. Nov. Med. Tekhnol., Elektron. Izd., No. 5, 245 (2018).

  15. N. E. Tereshkina, O. V. Zlobina, A. N. Ivanov, and A. A. Dolgov, Region. Krovoobr. Mikrotsirk. 3 (67), 129 (2018). https://doi.org/10.24884/1682-6655-2018-17-3-129-134

    Article  Google Scholar 

  16. A. Humeau, A. Koitka, P. Abraham, et al., Phys. Med. Biol. 49, 843 (2004).

    Article  Google Scholar 

  17. A. I. Krupatkin, Region. Krovoobr. Mikrotsirk. 13 (1), 83 (2014).

    Google Scholar 

  18. D. D. Gutterman, D. S. Chabowski, A. O. Kadlec, et al., Circ. Res. 118, 157 (2016). https://doi.org/10.1161/CIRCRESAHA.115.305364

    Article  Google Scholar 

Download references

Funding

This work was performed as part of the project “Development of a mathematical model to assess the rate at which functional changes in the body due to light-induced desynchronosis transform into irreversible morphological changes in the target organs in a simulation experiment” according to the State Assignment to the Razumovsky Saratov State Medical University of the Ministry of Health of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Pakhomii.

Ethics declarations

The authors declare that they do not have conflicts of interest.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zlobina, O.V., Pakhomii, S.S., Smolina, E.V. et al. Effect of Photoperiod Duration on Microcirculation in the Skin as Assessed Experimentally by Laser Doppler Flowmetry. Opt. Spectrosc. 129, 857–860 (2021). https://doi.org/10.1134/S0030400X21060205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X21060205

Keywords:

Navigation