Skip to main content
Log in

Concept and feasibility study for the integrated evaluation of environmental monitoring data in forests

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

In the 1970s unexpected forest damages, called “new type of forest damage” or “forest decline”, were observed in Germany and other European countries. The Federal Republic of Germany and the German Federal States implemented a forest monitoring system in the early 1980s, in order to monitor and assess the forest condition. Due to the growing public awareness of possible adverse effects of air pollution on forests, in 1985 the ICP Forests was launched under the convention on long-range transboundary air pollution (CLRTAP) of the United Nations Economic Commission for Europe (UN-ECE). The German experience in forest monitoring was a base for the implementation of the European monitoring system. In 2001 the interdisciplinary case study “concept and feasibility study for the integrated evaluation of environmental monitoring data in forests”, funded by the German Federal Ministry of Education and Research, concentrated on in-depths evaluations of the German data of forest monitoring. The objectives of the study were: (a) a reliable assessment of the vitality and functioning of forest ecosystems, (b) the identification and quantification of factors influencing forest vitality, and (c) the clarification of cause-effect-relationships leading to leaf/needle loss. For these purposes additional data from external sources were acquired: climate and deposition, for selected level I plots tree growth data, as well as data on groundwater quality. The results show that in particular time series analysis (crown condition, tree growth, and tree ring analysis), in combination with climate and deposition are valuable and informative, as well as integrated evaluation of soil, tree nutrition and crown condition data. Methods to combine information from the extensive and the intensive monitoring, and to transfer process information to the large scale should be elaborated in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. With the project “Concept and Feasibility Study for the Integrated Evaluation of Environmental Monitoring Data in Forests” (IFOM) this postulation was taken up by the German Federal Ministry of Education and Research.

References

  • Augustin S, Schmieden U (1997) Boden-Pflanze-Interaktionen. In: Umweltbundesamt (Hrsg.): “Auswertung der Waldschadensforschungsergebnisse (1982–1992) zur Aufklärung komplexer Ursache-Wirkungsbeziehungen mit Hilfe systemanalytischer Methoden”, UBA Berichte 6/97

  • Augustin S, Andreae H (eds) (1998) Cause-effect-interrelations in forest condition—state of knowledge. Study elaborated for the UN/ECE ICP Forests under the auspices of the convention on long-range transboundary air pollution. PCC of ICP Forests, BFH, Hamburg

  • Augustin S, Stephanowitz H, Schröder J, Hoffmann E, Wolff B (2005a) Manganese in tree rings of Norway spruce as indicator for soil chemical changes in the past. Euro J For Res

  • Augustin S, Bolte A, Holzhausen M, Wolff B (2005b) The relationships between the exceedance of critical thresholds for nitrogen and sulfur on Level I plots and state parameters of the forest monitoring. Europ J For Res

  • Bolte A, Wolff B, Burkl G, Lehmann R, Kifinger B, Robrecht D, Zahn H (2001) Validierung von Critical Load-Überschreitungen mit Indikatoren des aktuellen Wirkungsgeschehens. Arbeitsbericht Institut für Forstökologie und Walderfassung der Bundesforschungsanstalt für Forst-und Holzwirtschaft 2001/4, Eberswalde, 289 p. (http://www.bfafh.de/bibl/cl.htm)

  • Butterbach-Bahl K, Stange F, Papen H, Li C (2001) Regional inventory of nitric oxide and nitrous oxide emissions for forest soils of southeast germany using the biogeochemical model PnET-N-DNDC. J Geophys Res 106:34155–34165

    Article  CAS  Google Scholar 

  • De Vries W, Klap JM, Erisman JW (2000) Effects of environmental stress on forests crown condition in Europe. Part I: hypotheses and approach to the study. Water Air Soil Pollut 119:317–333

    Article  Google Scholar 

  • Dittmar C, Zech W (1994) Dendroökologische und ernährungskundliche Untersuchungen an gesunden und kranken Buchen (Fagus sylvatica L.) der nordböhmische Mittelgebirge. Dendrochronologia 12:45–56

    Google Scholar 

  • Eichhorn J, Schulze E-D, Anders S, Block J, Gravenhorst G, Hartmann G, Hildebrand EE, Hofmann G, Hradetzky J, Kallweit R, Kreutzer K, Matyssek R, Nebe W, Pretzsch H (1998) Stellungnahme und Empfehlung zur Weiterentwicklung der Erhebung des Waldzustands. Bericht der vom Bundesministerium für Ernährung, Landwirtschaft und Forsten eingesetzten Expertengruppe. In: Waldzustandsbericht der Bundesregierung 1997:168–209

  • Eichhorn J, Icke R, Isenberg A, SchönfelderE (2005) Temporal development of crown condition of beech and oak as response variable for integrated evaluations. Euro J For Res

  • Ellenberg H, Mayer R, Schauermann J (1986) Ökosystemforschung—Ergebnisse des Sollingprojekts. Ulmer-Verlag, Stuttgart

    Google Scholar 

  • Evers J, Schulze A (2005) Zur Schlüsselrolle eines integrierten Datenmanagements für die verbesserte Nutzbarmachung von Daten des forstlichen Umweltmonitorings. Zeitschrift für Agrarinformatik 13:9–17

    Google Scholar 

  • Godbold DL (1998) Stress concepts and forest trees. Chemosphere 36:859–864

    Article  CAS  Google Scholar 

  • Grinsven HJM van, Driscoll C, Tiktak A (1995) Workshop on comparison of forest soil atmosphere models: preface. Ecol Model 83:1–6

    Article  Google Scholar 

  • Hauhs M (1990) Ecosystem modelling: science or technology? J Hydrol 116:25–33

    Article  Google Scholar 

  • Hildebrand EE, von Wilpert K, Buberl H (1996) Erkenntnismöglichkeiten in Waldökosystemen im Spannungsfeld zwischen großräumiger Mustererkennung und dem „eisernen Gesetz des Örtlichen”. Allgemeine Forst- u. Jagd-Zeitung 167:174–178

    Google Scholar 

  • Innes JL (1992) Forest decline. Prog Phys Geogr 16:1–64

    Article  Google Scholar 

  • Lorenz M (1995) 10 Jahre ICP Forests—Von der Kronenzustandserhebung zum intensiven Monitoring. Allgemeine Forstzeitschrift/Der Wald 50:1094–1096

    Google Scholar 

  • Lükewille A, Jeffries D, Johannessen M, Raddum G, Stoddard J, Traaen T (1997) The nine year report: Acidification of surface water in Europe and North America—Long-term developments (1980s and 1990s). Norwegian Institute for Water Research. ISBN 82-577-3195-1. 168 p

  • Magill AH, Aber JD, Currie WS, Nadelhoffer KS, Martin ME, McDowell WH, Melillo JM, Steudler P (2004) Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. For Ecol Manage 196:7–28

    Article  Google Scholar 

  • Manion PD (1981) Tree disease concepts. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Matschullat J, Heinrichs H, Schneider J, Ulrich B (1994) Gefahr für Ökosysteme und Gewässer.—Ergebnisse interdisziplinärer Forschung im Harz. Springer-Verlag, Berlin, p 478

    Google Scholar 

  • Matzner E (1988) Der Stoffumsatz zweier Waldökosysteme im Solling. Berichte des Forschungszentrums Waldökosysteme/Waldsterben, Reihe A, Bd. 40

  • Meesenburg H, Dammann I, Evers J, Schulze A, Rademacher P, Mindrup M, König N, Fortmann H, Eberl C, Meiwes K-J (2002) Forstliches Umweltmonitoring als Entscheidungshilfe für die Forstwirtschaft und Umweltpolitik. Forst und Holz 57:707–712

    Google Scholar 

  • Müller-Edzard C, DeVries W, Erisman JW (eds) (1997) Ten years of monitoring forest condition in Europe. EC-UN/ECE, Brussels, Geneva. 386p. ISBN 3-926301-00-7

  • Musio M, Wilpert K von, Augustin N (2006) Crown condition as a function of soil, site and tree characteristics. Euro J For Res, submitted

  • Nadelhoffer KJ, Emmett BA, Gundersen P, Kjönaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148

    Article  CAS  Google Scholar 

  • Nellemann C, Thomsen MG (2001) Long-term changes in forest growth: potential effects of nitrogen deposition and acidification. Water Air Soil Pollut 128:197–205

    Article  CAS  Google Scholar 

  • NML (2004) Waldzustand 2004—Ergebnisse der Waldzustandserhebung. Herausgegeben von: Niedersächsisches Ministerium für den ländlichen Raum, Ernährung, Landwirtschaft und Verbraucherschutz

  • O’Neill RV, DeAngelis DL, Waide JB, Allen TFH (1986) A hierarchical concept of ecosystems. Princeton University Press, Princeton, NJ, p 253

    Google Scholar 

  • Overrein LN, Seip HM, Tollan A (1980) Acid precipitation—effects on forest and fish. Final report of the SNSF Project 1972–1980. Oslo, As

  • Paar U, Kirchhoff A, Westphal J, Eichhorn J (2000) Die Fruktifikation der Buche in Hessen. Allgemeine Forstzeitschrift 55:1362–1363

    Google Scholar 

  • Rötzer T, Grote R, Pretzsch H (2005) Effects of environmental changes on the vitality of forest stands. Euro J For Res

  • Schröder J, Riek W (2005) Bundesweite Aufbereitung, Ergänzung und integrierende Auswertung von Daten des Umweltmonitoring im Wald. Final report of the BMBF project (No. 0339985): Concept and feasibility study for the integrated evaluation of environmental monitoring data in forests (IFOM)

  • Schultze B, Kennel M, Preuhssler T, Hammel K (2050 Modellierung der Dynamik des Wasser- und Stoffhaushaltes. Final report of the BMBF project (No. 0339985): Concept and feasibility study for the integrated evaluation of environmental monitoring data in forests (IFOM), May 2005

  • Schulze E-D (1989) Air pollution and forest decline in a spruce (Picea abies L.) forest. Science 244:776–783

    Article  PubMed  CAS  Google Scholar 

  • Seidling W (2004) Crown condition within integrated evaluations of Level II monitoring data at the German level. Euro J For Res 123:63–74

    Google Scholar 

  • Spiecker H, Mielikäinen K, Köhl M, Skovsgaard J (eds) (1996) Growth trends in European Forests—Studies from 12 countries. European Forest Institute Research Report No. 5. Springer, 372p

  • Ulrich B, Mayer R, Khanna PK (1979) Deposition von Luftverunreinigungen und ihre Auswirkungen in Waldökosystemen im Solling. Schriften der Forstlichen Fakultät der Universität Göttingen und der Niedersächsischen Forstlichen Versuchsanstalt, Bd. 58, 291p

  • Ulrich B (1989) Effects of acidic precipitation on forest ecosystems in Europe. In: Adriano DC, Johnson AH (eds) Acid precipitation. Springer-Verlag, Berlin 2:189–272

    Google Scholar 

  • Ulrich B (1994) Ökosystemare Grundlagen—Stoffhaushalt von Waldökosystemen und Gewässerqualität. p1–19. In: Matschullat J, Heinrichs H, Schneider J, Ulrich B (eds) Gefahr für Ökosysteme und Gewässer.—Ergebnisse interdisziplinärer Forschung im Harz. Springer-Verlag, Berlin, p 478

  • Utschig H (1989) Waldwachstumskundliche Untersuchungen im Zusammenhang mit Waldschäden. Auswertungen der Zuwachstrendanalyseflächen des Lehrstuhles für Waldwachstumskunde für die Fichte (Picea abies (L.) Karst.) in Bayern. Forstliche Forschungsberichte München 97, 198p

  • Venterea RT, Groffman PM, Verchot LV, Magill AH, Aber JD (2004) Gross nitrogen process rates in temperate forest soils exhibiting symptoms of nitrogen saturation. For Ecol Manage 196:129–142

    Article  Google Scholar 

  • Webster KL, Creed LF, Nicholas NS, Miegroet H van (2004) Exploring interactions between pollutant emissions and climatic variability in growth of red spruce in the great smoky mountains national park. Water Air Soil Pollut 159:225–248

    Article  CAS  Google Scholar 

  • Wellbrock N, Riek W, Wolff B (2002) Integrierende Auswertung bundesweiter Waldzustandsdaten. Arbeitsbericht Nr. 2002/1:112p

  • Wellbrock N, Kies U, Riek W, Wolff B (2004) Methodenentwicklung zur Ableitung von Maßnahmeempfehlungen für Waldzustandstypen. Abschlussbericht zum Forschungsauftrag 01HS002, Maßnahmeempfehlungen für Waldzustandstypen unter variierenden Umweltbedingungen—Modellrechnungen und Szenarien auf der Grundlage des bundesweiten Forstlichen Monitorings. Fachhochschule Eberswalde, in Kooperation mit der BFH Hamburg, 120p

  • Wellbrock N, Riek W, Wolff B (2005) Characterisation and changes of the atmospheric deposition situation in German forest ecosystems using multivariate statistics. Euro J For Res

  • Wolff B, Riek W (1997) Deutscher Waldbodenbericht 1996—Ergebnisse der bundesweiten Bodenzustandserhebung im Wald (BZE) 1987–1993. Bundesministerium für Ernährung Landwirtschaft und Forsten, 2 vols

  • Wolff B (2002) Daten von gestern für Fragen von heute und Entscheidungen morgen? Beiträge für Forstwirtschaft und Landschaftsökologie 36:97–102

    Google Scholar 

  • Wright RF, Roelofs JGM, Bredemeier M, Blanck K, Boxman AW, Emmett BA, Gundersen P, Hultberg H, Kjonaas OJ, Moldan F, Tietema A, Van Breemen N, Van Dijk HFG (1995) Nitrex—responses of coniferous forest ecosystems to experimentally changed deposition of nitrogen. For Ecol Manage 71:163–169

    Article  Google Scholar 

  • Zirlewagen D (2003) Regionalisierung bodenchemischer Eigenschaften in topographisch stark gegliederten Waldlandschaften. Freiburger Forstliche Forschung, Bd. 19, 154p

Download references

Acknowledgements

The study was conducted within the framework of the combined project “Concept and Feasibility study for the Integrated Evaluation of Environmental Monitoring data in Forests” (No. 0339985), founded by the German Ministry for Research and Education. We would like to thank for this financial support. Especially thanks to Dr. R. Loskill, Ms. H. Neumann, and Ms. P. Mahlitz. Associated projects were founded by the Federal Agency for Agriculture and Food (No. 01HS002 and 00HS041), we would like to thank Ms. U. Neumann. We would like to thank Mr. Th. Haußmann, German Ministry for Consumer Protection, for all kind of support in all stages of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Augustin.

Additional information

Communicated by Peter Biber

Appendix

Appendix

The structure of the German case study

Participating institutions in the IFOM project are (a) the federal research centre for forestry and forest products (BFH), (b) forest research institutions of the German federal states, as well as (c) university institutes, and (d) the German environmental agency. In the sub projects various forestry disciplines closely cooperated. In Fig. 2 the sub projects (SP) and their position in the whole project are presented. The evaluations can be divided into the fields “cause-effect-relations” and “regionalization”, but there are many transitions and overlapping tasks. All sub projects are assigned to at least one thematically item.

Fig. 2
figure 2

The position of the sub-projects (SP) in the combined project “concept and feasibility study for the integrated evaluation of environmental monitoring data in forests (IFOM)”

The coordinating institution is the Institute for Forest Ecology and Forest Inventory of the Federal Research Centre for Forestry and Forest Products, located in Eberswalde. The task of the project coordination (SP 1) is the acquiring, documentation and distribution of external data, the organisation of status seminars and reporting. Together with the other project partners, the synthesis of the results, and the formulation of the recommendations is the final task of SP 1. In the project “data management” (SP 2) a unified data management system for the storage of all environmental monitoring data was developed, including the implementation of algorithms for frequently occuring evaluations. The permanent cooperation with forest scientists from the other projects is essential for this.

In SP 3b the suitability of the inclusion of growth data in the large scale monitoring (level I) was tested. The subject of the associated project 6b, funded by the “Federal Agency for Agriculture and Food”, was the simulation of growth and vitality. Using the model BALANCE growth and vitality of single trees of different level II plots were calculated on the base of physiological processes. The evaluation of nutritional development types was in the focus of the SP 7b, with the aim to bridge gaps in time series and to transfer the results to the large scale. The special focus of SP 4 was the test of various geostatistic and multivariate methods for the regionalization of environmental data. The—in some aspects—more dense monitoring net in Baden-Wuerttemberg, compared to entire Germany, provides the opportunity for this. The associated project “Integrated evaluation of forest monitoring data with multivariate methods” (financed by the “Federal Agency for Agriculture and Food”) deals also with the calculation of regionalization basing on the forest condition types or deposition. In SP 5 data from the level II monitoring were screened and evaluated in order to elaborate a strategy for integrated evaluation based on potential stress for forest trees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Augustin, S., Evers, J., Dietrich, HP. et al. Concept and feasibility study for the integrated evaluation of environmental monitoring data in forests. Eur J Forest Res 124, 251–260 (2005). https://doi.org/10.1007/s10342-005-0096-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-005-0096-0

Keywords

Navigation