Skip to main content

Advertisement

Log in

Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report

  • Clinical-Patient Studies
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Glioblastoma multiforme continues to be a devastating disease despite modest improvements in survival achieved at present, and there is an urgent need for innovative treatment concepts. Five-aminolevulinic acid (ALA) is a drug which induces protoporphyrin IX accumulation in malignant gliomas and has been explored for fluorescence-guided resections of these tumors. ALA is also under investigation as a photosensitizer. We report a case of a patient with prior left frontal glioblastoma multiforme treated by surgery, radiation and chemotherapy, who developed a remote lesion in the left insula, which was refractory to secondary treatments. In a compassionate use setting she was treated by oral application of ALA (20 mg/kg bodyweight), and stereotactic phototherapy achieved by positioning four laser diffusors using 3-dimensional irradiation planning, and a 633 nm diode laser. The lesion disappeared 24 h after therapy. Circumferential contrast enhancement was observed at 72 h, which disappeared in the course of subsequential months. Edema resolved completely. The patient is still free of recurrence 56 months after treatment, demonstrating an impressive and long-lasting response to this novel mode of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO; European Organisation for Research, Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  2. Brem H, Piantadosi S, Burger PC, Walker M, Selker R, Vick NA, Black K, Sisti M, Brem S, Mohr G et al (1995) Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The polymer-brain tumor treatment group. Lancet 345:1008–1012

    Article  PubMed  CAS  Google Scholar 

  3. Yung WK, Albright RE, Olson J, Fredericks R, Fink K, Prados MD, Brada M, Spence A, Hohl RJ, Shapiro W, Glantz M, Greenberg H, Selker RG, Vick NA, Rampling R, Friedman H, Phillips P, Bruner J, Yue N, Osoba D, Zaknoen S, Levin VA (2000) A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse. Br J Cancer 83:588–593

    Article  PubMed  CAS  Google Scholar 

  4. Kunwar S, Prados MD, Chang SM, Berger MS, Lang FF, Piepmeier JM, Sampson JH, Ram Z, Gutin PH, Gibbons RD, Aldape KD, Croteau DJ, Sherman JW, Puri RK; Cintredekin Besudotox Intraparenchymal Study Group (2007) Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the cintredekin besudotox intraparenchymal study group. J Clin Oncol 25:837–844

    Article  PubMed  CAS  Google Scholar 

  5. Rainov NG (2000) A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 11:2389–2401

    Article  PubMed  CAS  Google Scholar 

  6. Stummer W, Stocker S, Novotny A, Heimann A, Sauer O, Kempski O, Plesnila N, Wietzorrek J, Reulen HJ (1998) In vitro and in vivo porphyrin accumulation by C6 glioma cells after exposure to 5-aminolevulinic acid. J Photochem Photobiol B 45:160–169

    Article  PubMed  CAS  Google Scholar 

  7. Stummer W, Stocker S, Wagner S, Stepp H, Fritsch C, Goetz C, Goetz AE, Kiefmann R, Reulen HJ (1998) Intraoperative detection of malignant gliomas by 5-aminolevulinic acid induced porphyrin fluorescence. Neurosurgery 42:518–525

    Article  PubMed  CAS  Google Scholar 

  8. Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ (2000) Fluorescence guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: as prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013

    PubMed  CAS  Google Scholar 

  9. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401

    Article  PubMed  CAS  Google Scholar 

  10. Zelenkov P, Baumgartner R, Bise K, Heide M, Meier R, Stocker S, Sroka R, Goldbrunner R, Stummer W (2007) Acute morphological sequelae of photodynamic therapy with 5-aminolevulinic acid in the C6 spheroid model. J Neuro Oncol 82:49–60

    Article  CAS  Google Scholar 

  11. Karmakar S, Banik NL, Patel SJ, Ray SK (2007) 5-Aminolevulinic acid-based photodynamic therapy suppressed survival factors and activated proteases for apoptosis in human glioblastoma U87MG cells. Neurosci Lett 415:242–247

    Article  PubMed  CAS  Google Scholar 

  12. Inoue H, Kajimoto Y, Shibata MA, Miyoshi N, Ogawa N, Miyatake S, Otsuki Y, Kuroiwa T (2007) Massive apoptotic cell death of human glioma cells via a mitochondrial pathway following 5-aminolevulinic acid-mediated photodynamic therapy. J Neurooncol 83:223–231

    Article  PubMed  CAS  Google Scholar 

  13. Hirschberg H, Sun CH, Krasieva T, Madsen SJ (2006) Effects of ALA-mediated photodynamic therapy on the invasiveness of human glioma cells. Lasers Surg Med 38:939–945

    Article  PubMed  Google Scholar 

  14. Angell-Petersen E, Spetalen S, Madsen SJ, Sun CH, Peng Q, Carper SW, Sioud M, Hirschberg H (2006) Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model. J Neurosurg 104:109–117

    PubMed  Google Scholar 

  15. Olzowy B, Hundt CS, Stocker S, Bise K, Reulen HJ, Stummer W (2002) Photoirradiation therapy of experimental malignant glioma with 5-aminolevulinic acid. J Neurosurg 97:970–976

    Article  PubMed  CAS  Google Scholar 

  16. Beck TJ, Kreth FW, Beyer W, Mehrkens JH, Obermeier A, Stepp H, Stummer W, Baumgartner R (2007) Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Lasers Surg Med 39:386–393

    Article  PubMed  Google Scholar 

  17. Madsen S, Hirschberg H (2006) Photodynamic therapy and detection of high-grade gliomas. J Environ Pathol Toxicol Oncol 25:453–466

    PubMed  Google Scholar 

  18. Powers SK, Cush SS, Walstad DL, Kwock L (1991) Stereotaxic intratumoral photodynamic therapy for recurrent malignant brain-tumors. Neurosurgery 29:688–696

    Article  PubMed  CAS  Google Scholar 

  19. Krishnamurthy S, Powers SK, Witmer P, Brown T (2000) Optimal light dose for interstitial photodynamic therapy in treatment for malignant brain tumors. Lasers Surg Med 27:224–234

    Article  PubMed  CAS  Google Scholar 

  20. Schmidt MH, Meyer GA, Reichert KW, Cheng J, Krouwer HG, Ozker K, Whelan HT (2004) Evaluation of photodynamic therapy near functional brain tissue in patients with recurrent brain tumors. J Neuro Oncol 67:201–207

    Article  Google Scholar 

  21. Hebeda KM, Kamphorst W, Sterenborg HJCM, Wolbers JG (1998) Damage to tumour and brain by interstitial photodynamic therapy in the 9L rat tumour model comparing intravenous and intratumoral administration of the photosensitiser. Acta Neurochir 140:495–501

    Article  CAS  Google Scholar 

  22. Chen Q, Chopp M, Madigan L, Dereski MO, Hetzel FW (1996) Damage threshold of normal rat brain in photodynamic therapy. Photochem Photobiol 64:163–167

    Article  PubMed  CAS  Google Scholar 

  23. Dereski MO, Chopp M, Chen Q, Hetzel FW (1989) Normal braintissue response to photodynamic therapy—histology, vascular-permeability and specific-gravity. Photochem Photobiol 50:653–657

    Article  PubMed  CAS  Google Scholar 

  24. Whelan HT, Schmidt MH, Segura AD, McAuliffe TL, Bajic DM, Murray KJ, Moulder JE, Strother DR, Thomas JP, Meyer GA (1993) The role of photodynamic therapy in posterior fossa brain tumors. A preclinical study in a canine glioma model. J Neurosurgery 79:562–568

    CAS  Google Scholar 

  25. Stummer W, Gotz C, Hassan A, Heimann A, Kempski O (1993) Kinetics of Photofrin II in perifocal brain edema. Neurosurgery 33:1075–1081

    Article  PubMed  CAS  Google Scholar 

  26. Stummer W, Hassan A, Kempski O, Goetz C (1996) Photodynamic therapy within edematous brain tissue: considerations on sensitizer dose and time point of laser irradiation. J Photochem Photobiol B 36:179–181

    Article  PubMed  CAS  Google Scholar 

  27. van Duijnhoven FH, Aalbers RI, Rovers JP, Terpstra OT, Kuppen PJ (2003) The immunological consequences of photodynamic treatment of cancer, a literature review. Immunobiology 207:105–113

    Article  PubMed  Google Scholar 

  28. Jalili A, Makowski M, Switaj T, Nowis D, Wilczynski GM, Wilczek E, Chorazy-Massalska M, Radzikowska A, Maslinski W, Bialy L, Sienko J, Sieron A, Adamek M, Basak G, Mroz P, Krasnodebski IW, Jakobisiak M, Golab J (2004) Effective photoimmunotherapy of murine colon carcinoma induced by the combination of photodynamic therapy and dendritic cells. Clin Cancer Res 10:4498–4508

    Article  PubMed  CAS  Google Scholar 

  29. Korbelik M, Sun J, Cecic I (2005) Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response. Cancer Res 65:1018–1026

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by Deutsche Krebshilfe; Grant Number: 70-2864

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Stummer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stummer, W., Beck, T., Beyer, W. et al. Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report. J Neurooncol 87, 103–109 (2008). https://doi.org/10.1007/s11060-007-9497-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-007-9497-x

Keywords

Navigation