Skip to main content
Log in

Antibiotika resistenzgene im Ackerboden

Antibiotika in der Landwirtschaft

  • Wissenschaft
  • Published:
BIOspektrum Aims and scope

Abstract

Antibiotic substances and resistant bacterial populations are introduced into agricultural soil by manure fertilization. However, the fate and effects of antibiotics in soil are not well understood. Here, we give an overview about effects of agricultural use of antibiotics on soil microbial communities, abundance, and transfer of resistance genes, the role of mobile genetic elements such as plasmids and the potential risks for human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (2008) GERMAP2008: Antibiotika-Resistenz und -Verbrauch. Antiinfectives Intelligence GmbH, Rheinbach

    Google Scholar 

  2. Heuer H, Schmitt H, Smalla K (2011) Antibiotic resistance gene spread due to manure application on agricultural fields. Curr Opin Microbiol 14:236–243

    Article  PubMed  CAS  Google Scholar 

  3. Knapp CW, Dolfing J, Ehlert PAI et al. (2009) Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 44:580–587

    Article  Google Scholar 

  4. Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  PubMed  CAS  Google Scholar 

  5. Perreten V, Boerlin P (2003) A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland. Antimicrob Agents Chemother 47:1169–1172

    Article  PubMed  CAS  Google Scholar 

  6. Jechalke S, Kopmann C, Rosendahl I et al. (2013) Increased abundance and transferability of resistance genes after field application of manure from sulfadiazine-treated pigs. Appl Environ Microbiol 79:1704–1711

    Article  PubMed  CAS  Google Scholar 

  7. Kopmann C, Jechalke S, Rosendahl I et al. (2013) Abundance and transferability of antibiotic resistance as related to the fate of sulfadiazine in maize rhizosphere and bulk soil. FEMS Microbiol Ecol 83:125–134

    Article  PubMed  CAS  Google Scholar 

  8. Wellington EMH, Boxall ABA, Cross P et al. (2013) The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect Dis 13:155–165

    Article  PubMed  CAS  Google Scholar 

  9. Heuer H, Binh CTT, Jechalke S et al. (2012) IncP-1ɛ plasmids are important vectors of antibiotic resistance genes in agricultural systems: diversification driven by class 1 integron gene cassettes. Front Microbiol, doi: 10.3389/fmicb.2012.00002

    Google Scholar 

  10. Rosendahl I, Siemens J, Groeneweg J et al. (2011) Dissipation and sequestration of the veterinary antibiotic sulfadiazine and its metabolites under field conditions. Environ Sci Technol 45:5216–5222

    Article  PubMed  CAS  Google Scholar 

  11. Forsberg KJ, Reyes A, Wang B et al. (2012) The shared antibiotic resistome of soil bacteria and human pathogens. Science 337:1107–1111

    Article  PubMed  CAS  Google Scholar 

  12. Johnsen PJ, Townsend JP, Bøhn T et al. (2009) Factors affecting the reversal of antimicrobial-drug resistance. Lancet Infect Dis 9:357–364

    Article  PubMed  CAS  Google Scholar 

  13. Heuer H, Solehati Q, Zimmerling U et al. (2011) Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine. Appl Environ Microbiol 77:2527–2530

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kornelia Smalla.

Additional information

Sven Jechalke 2001–2007 Biologiestudium an der Universität Osnabrück. 2007–2010 Promotion am Helmholtz-Zentrum für Umweltforschung (UFZ) in Leipzig in der Arbeitsgruppe von Dr. H.-H. Richnow. Seit 2010 Postdoc am Julius Kühn-Institut in Braunschweig in der Arbeitsgruppe von Prof. Dr. K. Smalla, Institut für Epidemiologie und Pathogen — diagnostik.

Holger Heuer Biologiestudium an der TU Braunschweig. 1998 Dissertation in der Arbeitsgruppe von Prof. Dr. K. Smalla. Projekte über mikrobielle Ökologie und mobile genetische Elemente an der Biologischen Bundesanstalt für Land- und Forstwirtschaft, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, und University of Idaho, Moscow, USA. Seit 2009 eigene Arbeitsgruppe zu Nematoden und assoziierten Mikroorganismen am Julius Kühn-Institut, Braunschweig.

Kornelia Smalla 1975–1980 Chemiestudium an der Universität Halle-Wittenberg, dort 1980–1984 Promotion in der Biochemie bei Prof. Dr. P. Hermann. 1984–1991 Leiterin des Referenzlabors für hygienische Risiken biotechnologischer Verfahren am Bezirkshygieneinstitut Magdeburg. 1991–2007 wissenschaftliche Mitarbeiterin in der Biologischen Bundesanstalt für Land- und Forstwirtschaft in Braunschweig, seit 2008 in der Nachfolgeeinrichtung: Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen, am Institut für Epidemiologie und Pathogendiagnostik als Leiterin der Arbeitsgruppe für mikrobielle Ökologie und bakterielle Phytopathogene. 1999 Venia legendi in der Mikrobiologie an der TU Braunschweig, dort seit 2006 außerplanmäßige Professur für Mikrobiologie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jechalke, S., Heuer, H. & Smalla, K. Antibiotika resistenzgene im Ackerboden. Biospektrum 19, 243–246 (2013). https://doi.org/10.1007/s12268-013-0299-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12268-013-0299-8

Navigation