Tierarztl Prax Ausg G Grosstiere Nutztiere 2021; 49(06): 425-431
DOI: 10.1055/a-1580-6938
Kasuistik

Herausforderungen bei der Influenzadiagnostik in einem Schweinebetrieb – ein Fallbericht

Challenges in Influenza diagnostics in a swine herd – a case report
Christine Unterweger
1   Universitätsklinik für Schweine, Department für Nutztiere und öffentliches Gesundheitswesen in der Veterinärmedizin, Veterinärmedizinische Universität Wien, Österreich
,
Stephanie Debeerst
2   Vetpraxis Hegerberg, Kasten, Österreich
,
Eva Klingler
2   Vetpraxis Hegerberg, Kasten, Österreich
,
Angelika Auer
3   Institut für Virologie, Department für Pathobiologie, Veterinärmedizinische Universität Wien, Österreich
,
Monika Redlberger-Fritz
4   Zentrum für Virologie, Medizinische Universität Wien, Österreich
,
Julia Stadler
5   Klinik für Schweine, Ludwig-Maximilians-Universität München
,
Stefan Pesch
6   Ceva Innovation Centre GmbH, Dessau-Roßlau
,
Kathrin Lillie-Jaschniski
6   Ceva Innovation Centre GmbH, Dessau-Roßlau
,
Andrea Ladinig
1   Universitätsklinik für Schweine, Department für Nutztiere und öffentliches Gesundheitswesen in der Veterinärmedizin, Veterinärmedizinische Universität Wien, Österreich
› Author Affiliations

Zusammenfassung

In einem Jungsauenerzeugerbetrieb in Niederösterreich traten über mehrere Jahre hinweg gehäuft Atemwegserkrankungen bei Jungsauen aus Eigenremontierung nach Einstallung in die Altsauenherde auf. Im Herbst 2019 wurden zudem Fruchtbarkeitsstörungen in Form von Spätaborten und Umrauschen beobachtet. Bei der Untersuchung von Nasentupfern mittels PCR auf Influenza-A-Virus (IAV) konnte bei 3 Jungsauen mit respiratorischer Symptomatik und Fieber der IAV-Subtyp H1avN1 nachgewiesen werden. Die Untersuchung der Serumproben dieser Tiere an 2 Zeitpunkten im Abstand von 3 Wochen ergab jedoch keinen Nachweis von Antikörpern im Hämagglutinationshemmtest (HAH), der standardmäßig im Labor verwendet wurde. Auch bei der Untersuchung von Sauen weiterer Altersgruppen waren keine eindeutigen Antikörpertiter gegenüber H1avN1 detektierbar. Nach Erweiterung des diagnostischen Panels des HAH um 7 H1avN1-Testantigene konnte eine Serokonversion um bis zu 3 Titerstufen bei den PCR-positiven Sauen gegenüber 2 verschiedenen H1avN1-Isolaten gemessen werden. Darüber hinaus ließen sich auch bei der Mehrzahl der restlichen untersuchten Altersgruppen hohe Antikörpertiter gegen diese beiden H1avN1-Teststämme nachweisen. Nach Anwendung des europaweit zugelassenen trivalenten Influenzaimpfstoffs konnte das klinische Erscheinungsbild in der Herde deutlich verbessert werden. Der Fallbericht verdeutlicht, dass für eine zielgerichtete Influenzadiagnostik der direkte und der indirekte Erregernachweis kombiniert verwendet werden sollten. Zudem wurde gezeigt, dass die kontinuierliche Anpassung von Testantigenen an die im Feld zirkulierenden Isolate überaus entscheidend für die Aussagekraft des HAH wäre.

Abstract

In a gilt producing farm in Lower Austria, respiratory diseases occurred over the previous years in self-reared gilts after being introduced into the sow herd. In addition, fertility disorders in terms of late abortions and re-breeders were observed in the fall of 2019. Nasal swabs of 3 gilts with respiratory signs and fever were tested positive for influenza A virus (IAV) subtype H1avN1 by PCR. However, examination of serum samples from these animals at 2 different time points did not detect antibodies using the standard hemagglutination inhibition (HI) test of the laboratory. Examination of additional age groups likewise failed to detect H1avN1 antibody titers. In consequence to the extension of the diagnostic panel of the HI test by 7 additional H1avN1 test antigens, a clear seroconversion of the PCR positive sows against 2 different H1avN1 isolates could be measured. In addition, high antibody titers against these 2 H1avN1 strains were also detectable in the majority of the remaining age groups tested. Following the administration of the trivalent influenza vaccine, which has been approved throughout Europe, a significant improvement of the clinical presentation in the herd was achieved. The present case report illustrates that direct and indirect pathogen detection should be used in combination for targeted influenza diagnostics. In addition, it was shown that the continuous adaptation of test antigens to the isolates circulating in the field would be extremely crucial for the significance of the HI test.

Zusatzmaterial



Publication History

Received: 18 February 2021

Accepted: 05 May 2021

Article published online:
03 December 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Pensaert M, Ottis K, Vandeputte J. et al. Evidence for the natural transmission of influenza A virus from wild ducks to swine and its potential importance for man. Bull World Health Organ 1981; 59 (01) 75-78
  • 2 Castrucci MR, Kawaoka Y. Biologic importance of neuraminidase stalk length in influenza A virus. J Virol 1993; 67 (02) 759-764
  • 3 Miwa Y, Piao FZ, Goto H. et al. Isolation of Human (H3N2) Influenza Virus and Prevalence of the Virus-Antibody in Swine. Japanese J Vet Sci 1987; 49 (06) 1168-1170 DOI: 10.1292/jvms1939.49.1168.
  • 4 Henritzi D, Petric PP, Lewis NS. et al. Surveillance of European Domestic Pig Populations Identifies an Emerging Reservoir of Potentially Zoonotic Swine Influenza A Viruses. Cell Host Microbe 2020; 28 (04) 614-627.e6 DOI: 10.1016/j.chom.2020.07.006.
  • 5 Haesebrouck F, Pensaert MB. Effect of intratracheal challenge of fattening pigs previously immunised with an inactivated influenza H1N1 vaccine. Vet Microbiol 1986; 11 (03) 239-249
  • 6 Brookes SM, Núñez A, Choudhury B. et al. Replication, pathogenesis and transmission of pandemic (H1N1) 2009 virus in non-immune pigs. PloS one 2010; 5 (02) e9068
  • 7 Lange E, Kalthoff D, Blohm U. et al. Pathogenesis and transmission of the novel swine-origin influenza virus A/H1N1 after experimental infection of pigs. J Gen Virol 2009; 90: 2119-2123 DOI: 10.1099/vir.0.014480-0.
  • 8 Van Reeth K, Vincent AL. Influenza Viruses. In: Zimmerman JJ, Karriker LA, Ramirez A. et al., eds. Diseases of Swine. 11thed.. Hoboken: Wiley; 2019: 576-593 DOI: 10.1002/9781119350927.ch36
  • 9 Yoon K-J, Janke BH. Swine Influenza: Etiology, Epidemiology, and Diagnosis. In: Morilla A, Kyoung-Jin Y, Zimmerman JJ. eds. Trends in Emerging Viral Infections of Swine. 1st ed.. Ames: Iowa State Press; 2002: 23-28 DOI: 10.1002/9780470376812.ch2a
  • 10 Gumbert S, Froehlich S, Rieger A. et al. Reproductive performance of pandemic influenza A virus infected sow herds before and after implementation of a vaccine against the influenza A (H1N1)pdm09 virus. Porcine Health Manag 2020; 6: 4 DOI: 10.1186/s40813-019-0141-x.
  • 11 Grøntvedt CA, Er C, Gjerset B. et al. Clinical Impact of Infection with Pandemic Influenza (H1N1) 2009 Virus in Naïve Nucleus and Multiplier Pig Herds in Norway. Influenza Res Treat 2011; 2011: 163745 DOI: 10.1155/2011/163745.
  • 12 Gourreau JM, Kaiser C, Madec F. et al. Transplacental passage of influenza virus in the sow under natural conditions. Annales de l’Institut Pasteur Virologie 1985; 136: 55-63
  • 13 Er C, Skjerve E, Brun E. et al. Production impact of influenza A(H1N1)pdm09 virus infection on fattening pigs in Norway. J Anim Sci 2016; 94 (02) 751-759 DOI: 10.2527/jas.2015-9251..
  • 14 Alvarez J, Sarradell J, Kerkaert B. et al. Association of the presence of influenza A virus and porcine reproductive and respiratory syndrome virus in sow farms with post-weaning mortality. Prev Vet Med 2015; 121: 240-245 DOI: 10.1016/j.prevetmed.2015.07.003.
  • 15 White LA, Torremorell M, Craft ME. Influenza A virus in swine breeding herds: Combination of vaccination and biosecurity practices can reduce likelihood of endemic piglet reservoir. Prev Vet Med 2017; 138: 55-69 DOI: 10.1016/j.prevetmed.2016.12.013.
  • 16 Pomorska-Mól M, Dors A, Kwit K. et al. Coinfection modulates inflammatory responses, clinical outcome and pathogen load of H1N1 swine influenza virus and Haemophilus parasuis infections in pigs. BMC Vet Res 2017; 13: 376 DOI: 10.1186/s12917-017-1298-7.
  • 17 Unterweger C, Wöchtl B, Spergser J. et al. Influenza-Ausbruch bei Aufzuchtferkeln unter Beteiligung von Mycoplasma hyorhinis und Haemophilus parasuis. Ein Fallbericht. Tieraerztl Prax Ausg G Grosstiere Nutztiere 2016; 44: 259-265 DOI: 10.15653/TPG-160100.
  • 18 Van Reeth K, Ma W. Swine influenza virus vaccines: to change or not to change – that’s the question. In: Richt J, Webby R. eds. Swine Influenza. Current Topics in Microbiology and Immunology. Vol. 370. Berlin, Heidelberg: Springer; 2012: 173-200 DOI: 10.1007/82_2012_266
  • 19 Influenza A virus of swine. In: OIE World Organisation for Animal Health, ed. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. 7th ed. 2018 Im Internet: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.09.07_INF_A_SWINE.pdf (Stand 1.5.2021)
  • 20 Am Fouchier R, Bestebroer TM, Herfst S. et al. Detection of influenza A viruses from different species by PCR amplification of conserved sequences in the matrix gene. J Clin Microbiol 2000; 38: 4096-4101
  • 21 Henritzi D, Harder T. Ordnung, Chaos und Neuordnung: Entwicklungen der Sub-und Genotypen porciner Influenzaviren in Deutschland und Europa. In: Leipziger Blaue Hefte, Tagungsband 3 des 9. Leipziger Tierärztekongresses 2017; 88
  • 22 Van Reeth K, Brown IH, Olsen CW. Influenza virus. In: Zimmerman JJ, Karriker LA, Ramirez A. et al., eds. Diseases of Swine. 10th ed.. Hoboken: Wiley; 2012: 557-571
  • 23 Nathues H, große Beilage E. Labordiagnostik an Probenmaterial aus Schweinebeständen. Tierarztl Prax Ausg G Grosstiere Nutztiere 2010; 38 (01) 57-64 DOI: 10.1055/s-0038-1623968.
  • 24 Van Reeth K, Labarque G, Pensaert M. Serological profiles after consecutive experimental infections of pigs with European H1N1, H3N2, and H1N2 swine influenza viruses. Viral Immunol 2006; 19 (03) 373-382 DOI: 10.1089/vim.2006.19.373.
  • 25 WHO information for laboratory diagnosis of pandemic (H1N1) 2009. Im Internet: https://www.who.int/csr/resources/publications/swineflu/WHO_Diagnostic_RecommendationsH1N1_20090521.pdf?ua=1 (Stand: 01.05.2021)
  • 26 Goecke NB, Krog JS, Hjulsager CK. et al. Subtyping of Swine Influenza Viruses Using a High-Throughput Real-Time PCR Platform. Front Cell Infect Microbiol 2018; 8: 165 DOI: 10.3389/fcimb.2018.00165.
  • 27 Henritzi D, Zhao N, Starick E. et al. Rapid detection and subtyping of European swine influenza viruses in porcine clinical samples by haemagglutinin- and neuraminidase-specific tetra- and triplex real-time RT-PCRs. Influenza Other Respir Viruses 2016; 10 (06) 504-517 DOI: 10.1111/irv.12407.
  • 28 Vincent AL, Ma W, Lager KM. et al. Characterization of a newly emerged genetic cluster of H1N1 and H1N2 swine influenza virus in the United States. Virus Genes 2009; 39 (02) 176-185
  • 29 Ryt-Hansen P, Pedersen AG, Larsen I. et al. Acute Influenza A virus outbreak in an enzootic infected sow herd: Impact on viral dynamics, genetic and antigenic variability and effect of maternally derived antibodies and vaccination. PloS one 2019; 14 (11) e0224854
  • 30 Ryt-Hansen P, Larsen I, Kristensen CS. et al. Limited impact of influenza A virus vaccination of piglets in an enzootic infected sow herd. Res Vet Sci 2019; 127: 47-56
  • 31 Ryt-Hansen P, Larsen I, Kristensen CS. et al. Longitudinal field studies reveal early infection and persistence of influenza A virus in piglets despite the presence of maternally derived antibodies. Vet Res 2019; 50 (01) 36 DOI: 10.1186/s13567-019-0655-x.
  • 32 Madec F, Kaiser C, Gourreau JM. et al. Consequences pathologiques d’un episode grippal severe (virus swine A/H1N1 dans les conditions naturelles chez la truie non immune en debut de gestation. Comp Immunol Microbiol Infect Dis 1989; 12 (01/02) 17-27 DOI: 10.1016/0147–9571(89)90005–2.
  • 33 Kwit K, Pomorska-Mól M, Markowska-Daniel I. The influence of experimental infection of gilts with swine H1N2 influenza A virus during the second month of gestation on the course of pregnancy, reproduction parameters and clinical status. BMC Vet Res 2014; 10: 123 DOI: 10.1186/1746-6148-10-123.
  • 34 Garrido-Mantilla J, Alvarez J, Culhane M. et al. Comparison of individual, group and environmental sampling strategies to conduct influenza surveillance in pigs. BMC Vet Res 2019; 15 (01) 61
  • 35 Graaf A, Henritzi D, Harder T. Influenza bei Schweinen in Deutschland und Europa. Tierarztl Umsch 2019; (74) 406-411
  • 36 Simon-Grifé M, Martín-Valls GE, Vilar MJ. et al. Swine influenza virus infection dynamics in two pig farms; results of a longitudinal assessment. Vet Res 2012; 43: 24 DOI: 10.1186/1297-9716-43-24.
  • 37 Kim W-I, Wu W-H, Janke B. et al. Characterization of the humoral immune response of experimentally infected and vaccinated pigs to swine influenza viral proteins. Arch Virol 2006; 151 (01) 23-36 DOI: 10.1007/s00705-005-0615-9.
  • 38 Barbé F, Labarque G, Pensaert M. et al. Performance of a commercial Swine influenza virus H1N1 and H3N2 antibody enzyme-linked immunosorbent assay in pigs experimentally infected with European influenza viruses. J Vet Diagn Invest 2009; 21 (01) 88-96 DOI: 10.1177/104063870902100113..
  • 39 Rizzo C, Bella A, Alfonsi V. et al. Influenza vaccine effectiveness in Italy: Age, subtype-specific and vaccine type estimates 2014/15 season. Vaccine 2016; 34 (27) 3102-3108
  • 40 Dürrwald R, Krumbholz A, Baumgarte S. et al. Swine influenza A vaccines, pandemic (H1N1) 2009 virus, and cross-reactivity. Emerg Infect Dis 2010; 16 (06) 1029
  • 41 Kyriakis CS, Olsen CW, Carman S. et al. Serologic cross-reactivity with pandemic (H1N1) 2009 virus in pigs, Europe. Emerg Infect Dis 2010; 16 (01) 96