IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received September 12,2021, accepted September 29, 2021, date of publication October 4, 2021, date of current version October 18, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3117603

Early Bearing Fault Diagnosis of Rotating
Machinery by 1D Self-Organized
Operational Neural Networks

TURKER INCE"“'?, JUNAID MALIK2, OZER CAN DEVECIOGLU 2,
SERKAN KIRANYAZ 3, (Senior Member, IEEE), ONUR AVCI“4,
LEVENT EREN!, AND MONCEF GABBOUJ 2, (Fellow, IEEE)

!Electrical and Electronics Engineering Department, Izmir University of Economics, 35330 Izmir, Turkey
2Department of Computing Sciences, Tampere University, 33100 Tampere, Finland

3Department of Electrical Engineering, Qatar University, Doha, Qatar

4Department of Civil, Construction and Environmental Engineering, lowa State University, Ames, IA 50011, USA

Corresponding author: Moncef Gabbouj (moncef.gabbouj@tuni.fi)

This work was supported in part by Danfoss, Konecranes and Raute within Business Finland funded INDEX Program.

ABSTRACT Preventive maintenance of modern electric rotating machinery (RM) is critical for ensuring
reliable operation, preventing unpredicted breakdowns and avoiding costly repairs. Recently many studies
investigated machine learning monitoring methods especially based on Deep Learning networks focusing
mostly on detecting bearing faults; however, none of them addressed bearing fault severity classification
for early fault diagnosis with high enough accuracy. 1D Convolutional Neural Networks (CNNs) have
indeed achieved good performance for detecting RM bearing faults from raw vibration and current signals
but did not classify fault severity. Furthermore, recent studies have demonstrated the limitation in terms
of learning capability of conventional CNNs attributed to the basic underlying linear neuron model.
Recently, Operational Neural Networks (ONNs) were proposed to enhance the learning capability of CNN
by introducing non-linear neuron models and further heterogeneity in the network configuration. In this
study, we propose 1D Self-organized ONNs (Self-ONNs) with generative neurons for bearing fault severity
classification and providing continuous condition monitoring. Experimental results over the benchmark
NSF/IMS bearing vibration dataset using both x- and y-axis vibration signals for inner race and rolling
element faults demonstrate that the proposed 1D Self-ONNs achieve significant performance gap against
the state-of-the-art (1D CNNs) with similar computational complexity.

INDEX TERMS Convolutional neural networks, operational neural networks, early bearing fault detection,

fault severity classification, condition monitoring of rotating elements, machine health monitoring.

I. INTRODUCTION

Electrical rotating elements and machines are widely used
in various industrial and commercial applications on account
of their reliability and efficiency. Mechanical bearing faults
have the highest statistical occurrence percentage among all
the motor fault types. Effective condition monitoring and
early fault detection and diagnosis of RM is critical for
maintaining reliable operation, avoiding unpredicted break-
downs, reducing operating costs and improving productiv-
ity. Generally, the main approaches to fault detection and
diagnosis (FDD) can be classified as analytical model-based
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methods, signal-based methods and knowledge-based meth-
ods: Model-based methods develop mathematical models
with parameters based on physical working principles of
the complex systems and/or measured data through system
identification and state-space modeling [1]. In practice, for
complex machine systems, it is increasingly difficult to
model its input-output behavior and harder to estimate its
parameters [2]. The signal-based methods are based on typ-
ical signal analysis such as vibration, motor current, speed,
and temperature, using signal processing methods such as
fast Fourier transform [3], spectral estimation [4], time-
frequency [5] and wavelet transformation [6], sequence anal-
ysis [7] and scale-invariant feature transform (SIFT) [8].
Motor current signature analysis (MCSA) is an example of
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a successful monitoring technique for electrical machines
based on acquisition and analysis of electrical signatures for
motor currents [4]. The signal-based FDD methods, similar
to the model-based FDD, require a priori knowledge of
signal patterns and often advanced signal processing tools
with increased computational complexity need to be applied
effective fault diagnosis [9]. The data-driven or knowledge-
based systems, as opposed to the previous two methods,
utilize large volumes of collected data (but only small amount
having label information) enabled by the advances in data
acquisition and control systems without the need for explicit
models [2]. Although many data-driven techniques including
shallow machine learning methods proposed in the literature
reported satisfactory levels of fault detection and diagnosis
performance, they depend on hand-designed features and/or
classifiers of different types and usually used small amount
of motor or RM data. Thus, they cannot accomplish generic
solution as their performance inevitably degrades for different
types of systems or faults and for larger datasets.

Recently, modern data-driven deep learning models devel-
oped by the machine learning researchers have been proposed
as solution to FDD problems. As opposed to shallow super-
vised learners, deep learning networks (DNNs) can learn the
required features from the raw input data via training fully
automatically voiding the need for the handcrafted statisti-
cal or transform-domain feature representations [10]-[17].
However, for a proper training, they need well-labelled train-
ing datasets with massive size. Jia et al. [10] showcased a
five-layer DNN model for fully automatic intelligent FDD of
RM. The pretraining of DNN model is achieved by an unsu-
pervised autoencoder (AE) and the vibration signal frequency
spectra was utilized as input. On the benchmark Case Western
Reserve University bearing dataset, their method obtained
95.8% classification accuracy to differentiate three bearings
with ball defects under different loads. In [11], a deep large
memory storage retrieval (LAMSTAR) neural network which
processes short-term Fourier transform (STFT) of raw acous-
tic emission signals for bearing fault diagnosis is presented.
From the test results using the real data, the LAMSTAR
network method improves performance compared to CNNs
at both the normal and relatively low input shaft speeds.
Xia et al. [12] proposed an intelligent FDD method by a
DNN based on stacked denoising. Fault diagnosis testing
accuracy of larger than 97% was achieved on the CWRU
dataset and their method can still obtain over 95% diagnosis
accuracy with only small fraction (3%) of labelled data. How-
ever, they employed a complex five-layer DNN with input
layer of 600 neurons and three hidden layers of 400, 200
and 50 neurons, respectively. For gearbox fault identification,
Chen et al. [13] developed a deep CNN with different manu-
ally selected sets of statistical and spectral (FFT) features at
its input and achieved classification accuracies ranging from
89% to 98% for various sets of inputs. In [14], the three-
layer CNN model processed scaled discrete Fourier trans-
form (DFT) of raw accelerometer signals to obtain 87.25%
average accuracy for bearing fault detection. More recently,
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a hierarchical adaptive deep CNN (ADCNN) based FDD
approach was proposed by Guo et al. [15] and achieved 99%
classification accuracy over the CWRU dataset. However,
this approach has slow convergence and high computational
complexity. Generative adversarial networks (GANs)-based
framework was proposed by Shao et al. [16] to learn to
generate 1D realistic raw data from mechanical sensor sig-
nals to augment real sensor data to resolve the issues of
unbalanced data on training deep networks for applications in
machine fault diagnosis. In [17], an improved convolutional
deep belief network (CDBN) was proposed for diagnosis of
rolling bearing faults where the original vibration signal was
first transformed to the frequency-domain via FFT before
being input to an optimized model structure to achieve better
accuracy than traditional SAE, ANN, DBN and CBDN mod-
els. Such deep models [15]-[17] have a high computational
complexity in common which prevents their usage in low-
power computing environments in real-time. Additionally,
they have not dealt with small training rate (small train data
size compared to test data) which is usually the case for
practical applications.

In order to incorporate the aforementioned issues, in this
study, we draw the focus on the bearing fault severity classi-
fication where the objective is to maximize early fault diag-
nosis performance when the data is scarce and the network
complexity is minimized for a real-time application over any
platform. In our previous study in [18], we proposed for the
first time, a compact 1D CNN for real-time motor bearing
fault classification and achieved the state-of-the-art perfor-
mance demonstrated over the benchmark bearing fault dataset
using raw current signals. Shallow 1D CNNs have light
training process with only few dozens of back-propagation
(BP) epochs, performing the classification task easily in
real-time [18]. Hence, they are good fit for real-time RM
condition monitoring and advance FDD systems.

Recent studies [19]-[21] have pointed out that CNNs
having homogenous network configuration based on a first-
order neuron model cannot adequately learn problems with a
complex and highly nonlinear solution space [19]-[21] unless
a sufficiently high network depth and complexity (variants
of CNN) are accommodated. Recently, Self-Organized Oper-
ational Neural Networks (Self-ONN) have been proposed
to achieve a high heterogeneity level with self-organized
operator optimization capability to maximize the learning
performance [25]. The superior regression capability of Self
ONNSs over image segmentation, restoration, and denoising
was demonstrated in recent studies [25], [29].

In this study, to achieve an elegant computational
efficiency and network heterogeneity, we propose one-
dimensional Self-organized ONNs (1D Self-ONNs) with
the generative neuron model for RM bearing fault sever-
ity classification. Having low computational complexity is
important since most FDD algorithms are implemented on
multi-function and/or multi-device monitoring systems. Our
objective is to improve RM bearing fault classification perfor-
mance compared to compact 1D CNNs [18] while preserving
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real-time computational ability. In summary, the contribu-
tions of the paper are the following:

o 1D Self-ONN model with enhanced learning capacity is
first-time proposed for early bearing fault diagnosis in
RMs.

o The run-to-failure bearing vibration signals from the
benchmark NSF/IMS dataset are utilized to detect early-
level, moderate-level and severe-level faults with higher
accuracy using 1D Self-ONNs.

o The proposed 1D Self-ONN classifier has a compact
structure (with fewer neurons and parameters) with low
computational complexity which enables its use in more
complex multi-function and/or multi-device monitoring
systems.

 This study shows that improved RM bearing fault classi-
fication performance can still be achieved without appli-
cation of complex deep networks needing dropout and
data augmentation techniques (due to data scarcity).

The rest of the paper is organized as follows: Section II

presents novel 1D Self-ONNs by comparing to the standard
1D CNNs and ONNs. The methodology of the proposed
RM bearing fault severity classification and condition mon-
itoring system based on 1D Self-ONN model is presented
in Section III. In Section IV, a detailed set of experimental
results based on the benchmark motor vibration dataset are
discussed and the performance of the proposed technique is
assessed against the state-of-the-art approach with 1D CNNs.
Finally, in Section V, the conclusions are presented and topics
for future research are listed.

Il. 1D SELF-ORGANIZED OPERATIONAL NEURAL
NETWORKS
In this section, we will proceed by revisiting how ONNs
generalize the 1D convolution operation. Afterwards, the
mathematical model of the proposed generative neuron-based
1D Self-ONN will be presented. First, we consider the case
of the k™ neuron in the /" layer of a 1D convolutional neural
network. To be concise, we assume the ‘same’ convolution
operation with unit stride and the required amount of zero
padding. The output of this neuron can be formulized as
follows:

Ni—1

Xe=b+ Y xh 1)
i=0

where bi is the bias associated with the this neuron and xilk is
defined as:

xh = Com1D(wi, y™ 1) 2)

Here, wi, € RX is the kernel connecting the i neuron of

(I — 1) 1ayer to k™ neuron of /" layer, while x, € R is

the input map, and yﬁ_leRM are the /" and (I — 1) layers’

k™ and i"* neurons’ outputs respectively. By definition, the
convolution operation of (2) can be expressed as follows:

K—-1
X (m) =y wi () yi " m+r) 3)
r=0
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where wj; kernel and shifted versions of (I — 1) layer’s
i neuron’s output yg_l are element-wise multiplied and
summed for the length of the kernel to obtain values of
M -dimensional input vector xfk .

The main idea behind an operational neuron is a general-
ization of the CNNs’ convolutional neuron above as follows:
7 Ul (ol -1 k=1

st =P (v (Wi ) man)) @)
where I/J‘Ik () : RMxK _, RK apd Pi(~) ‘R - R! are
termed as nodal and pool functions, respectively, assigned
to the k”* neuron of /" layer. Note that r represents the
running index for the K x 1 kernel vector wfk, which is
operated by the nodal operator wl" (-) optimized for the
k™ neuron of the [ layer during the Backpropagation
training.

In a heterogenous ONN configuration, every neuron has
uniquely assigned i and P operators. Owing to this, an ONN
network has the advantage of having the flexibility of
incorporating any non-linear transformation suitable for the
given learning problem at hand. However, hand-crafting a
suitable library of possible operators and searching for an
optimal one for each neuron in a network introduces a sig-
nificant overhead, which rises exponentially with increas-
ing network complexity. Moreover, it is also possible that
the right operator for the given learning problem cannot
be expressed in terms of well-known functions. The self-
organization ability is inherently embedded in the gener-
ative neuron model and thus, a Self-ONN will have the
nodal operator functions optimized during the training pro-
cedures to maximize the learning performance as illustrated
in Figure 1 illustrates convolutional and operational neurons
of a CNN and ONN with fixed (static) nodal operators,
while the generative neuron can have any arbitrary nodal
function, ¥, (including possibly standard types such as linear
and harmonic functions) for each kernel element of each
connection.

Operational neuron comes as a non-linear extension and
generalization of the CNNs’ convolutional neuron which
performs solely the linear convolution operation. The 1-D
Self-ONN aims to have the potential to achieve superior
operational diversity and flexibility through optimized nodal
and pool operators during the Backpropagation training and
hence maximize its learning performance. In this study,
we propose a 1D Self-ONN model for the challenging prob-
lem of RM bearing fault severity classification from raw
vibration signals thanks to its superior learning ability over
CNNEs.

To formulate a nodal transformation which does not require
a pre-selection and manual assignment of operators, we make
use of the Taylor-series based function approximation, which
is given for an infinitely differentiable function f(x) about a
point a as:

O £(n)
fw=3T"0 g ®)
n=0

n:

VOLUME 9, 2021



T. Ince et al.: Early Bearing Fault Diagnosis of Rotating Machinery by 1D Self-Organized Operational Neural Networks

IEEE Access

Layer |+1

(" CNN neuron)

Layer I+1 : 1+1 Layer I+1
‘i~
pi+t ; bl+1
N A
+—> ;xiH'l L + J— Xi
— y B
(i ONN Neuron) (i* Self-ONN Neuron)

FIGURE 1. Depiction of the 1D nodal operations with the 1D kernels of the kth CNN (left), ONN (middle) and Self-ONN (right).

The Q" order truncated approximation of (5), formally
known as the Taylor polynomial, takes the following form:

Q rm
f (x)(Q,a) — Z%x" (6)

n=0

The above formulation enables the approximation of any
function f (x) sufficiently well in the close vicinity of a. If the
coefficients J% are tuned and the inputs are bounded, the
formulation of (6) can be used to generate any transformation.
This is the key idea behind the generative neurons which form
Self-ONN . Specifically, in terms of notation used in (4), the
nodal transformation of a generative neuron would take the
following general form:

v (Wi )l m+m)

_ ZW @ 4) <y§_1

In(7), Qis a hyperparameter which controls the degree
of the Taylor approximation, and wf,(CQ) is a learnable ker-
nel of the network. A key difference in (7) as compared to

q
m+n) @

the convolutional (3) and operational (4) model is that w,ﬂ
is not fixed rather a distinct operator over each individual
output, y ], and thus requires Q times more parameters.
Therefore, the K x 1 kernel vector w! i has been replaced
by a K x Q matrix wi@ e RKXC which is formed by
replacing each element w k(r) with a Q-dimensional vector
1nput map of the generatlve neuron, xllk can now be expressed
as,
K—1

tontn)']®

r=0

k(m) Pl ZWI(Q) (l" q) (

During training, as w,({Q) is iteratively tuned by back-

propagation (BP), customized nodal transformation functions
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will be generated as a result of (8), which would be tailored
for i—k™ connection. This enables an enhanced flexibility
which provides three key benefits. First, the need for man-
ually defining a list of suitable nodal operators and search-
ing for the optimal operator for each neuronal connection
is naturally alleviated. Secondly, the heterogeneity is not
limited to each neuronal connection i — k but down to each
kernel element as 1/}1" ( I(Q)(r) yi Ym+ r)) will be unique
Vr € [0,1,...,K — 1]. Note that such a diversity is not
achievable even with the flexible operational neuron model
of ONNS. Thirdly, in generative neurons, the heterogeneity is
driven only by the values of the weights wﬁ,(cQ) and the core
operations (multiplication, summation) are the same for all
neurons in a layer, as shown in (8). Owing to this, unlike
ONN:gs, the generative neurons inside a Self-ONN layer can be
parallelized more efficiently, leading to a considerable reduc-
tion in computational complexity and time. The generalized
formulations of the forward-propagation through a Self-ONN
neuron and back-propagation training of the Self-ONNs are
described in [25], [29].

lll. METHODOLOGY

The mechanical bearing faults and electrical failures per insu-
lation or winding faults are among the main sources of faults
in induction machines (IMs) and/or RMs. Bearing faults have
the highest frequency of occurrence and are one of the most
challenging to detect and diagnose. As mechanical defects,
bearing faults result in vibrations at certain characteristic fault
frequencies, which can be obtained from the shaft speed and
the bearing geometry [27]. Interestingly, despite being the
most challenging to detect and quantify, bearing defects are
the least expensive to fix if detected in time to be replaced [6].
Therefore, in this study, we focus on the accurate and early
detection and hence severity classification of RM bearing
faults.

The IMS bearing dataset [26] has been frequently used
as a benchmark dataset to test and validate diagnostic algo-
rithms. As shown in Figure 2, the test setup for the IMS
dataset has four bearings installed on a shaft. In this study,
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FIGURE 2. Experimental setup per the IMS Bearing Dataset [26] and the general view of the proposed methodology
with training (offline) and online bearing fault level detection steps.

we used the first dataset for which data was collected from
two accelerometers attached to the bearing housing. The
experiment was carried out until failure of the bearings that
worked for more than hundred million revolutions occur.
As such, failures occurred as a result of accumulation of
incremental damages on the inner race, outer race and roller
element as a whole, with the test-to-failure loadings. The
effects of the faults are also visible on the amplitude spectrum
of the vibration signals. The formulations for characteristic
vibration frequencies along with bearing faults spectrum are
presented in Supplementary.

The general view of the proposed motor bearing fault
severity classification approach is shown in Figure 2 where
1D Self-ONNs receives the normalized vibration frames of
1000 samples from the two accelerometers on each bearing.
The normalized raw vibration signals from two accelerom-
eters (orthogonal x- and y- directions of the bearings) are
partitioned into the non-overlapping frames of 1000 samples.
Each frame is first standard normalized to take out the effect
of the DC offset and amplitude bias, then scaled linearly
in the range of [-1,1] to form the input frames of the Self-
ONN classifier. For the recorded vibration signals used for
training and evaluation, the four classes indicating the status
of the motor are: healthy, early-level fault, moderate-level
fault and severe-level fault. Here, there are three frequency
zones analyzed in the bearing vibration spectrum to assess the
condition of a bearing. The shaft velocity related frequencies,
bearing defect frequencies, and bearing natural resonance
frequencies appear in zones I, II, and III, respectively.

While the healthy bearing will have energy content only
in the zone I, the early-level fault is associated with the
energy in zones [ and III. For moderate-level fault, the bearing
fault characteristic vibration frequencies become present in
Zone II and the energy levels in zone III increase. Finally, the
severe-level fault is associated with increased energy levels
in zones I and III; and bearing fault characteristic fundamen-
tal and harmonic vibration frequencies appear to be more
pronounced in zone II [30]. In our study, experts labeled
the vibrations signals for three different fault severity levels
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in advance based on the spectral analysis. Further details
about the bearing fault characteristic vibration frequencies are
provided in the Supplementary Material section.

As stated earlier, the 1D CNN is a special case of 1D
Self-ONN with Q = 1 assigned for all neurons. Therefore,
the experimental setup shown in Figure 2 can also conve-
niently be used to evaluate the performance of a conventional
1D CNN. The experimental setup and network parameters
will be presented in the next section.

IV. EXPERIMENTAL RESULTS

In this section, the benchmark motor bearing fault dataset
used in this study will be introduced first. Then, the exper-
imental setup used for evaluation of the proposed bearing
fault severity classification framework will be presented. The
comparative evaluations and the overall results of the exper-
iments obtained using the real motor vibration signals will
be presented as a following step. Additionally, the computa-
tional complexity of the proposed approach for both training
(offline) and classification (online) phases will be evaluated
in detail and compared with the 1D CNNs.

A. THE BEARING FAULT DATASET

The benchmark bearing dataset used in this study was gener-
ated by the NSF IUCRC, Center for Intelligent Maintenance
Systems (IMS) [26]. The test rig setup includes four dou-
ble row bearings attached on a shaft with a constant rota-
tional velocity of 2000 RPM. A radial load of 6 kips was
applied onto the shaft and bearing by a spring mecha-
nism. PCB accelerometers (353B33 high sensitivity Quartz
ICP) were attached on the bearing housing. For dataset 1,
two accelerometers were attached for each bearing’s x- and
y-axes; for datasets 2 and 3, one accelerometer was attached
for each bearing. Each recorded file (NI DAQ Card 6062E)
is made up of 20,480 points with a sampling frequency
of 20.48 kHz and it describes a test-to-failure experiment.
One second data acquisition was made every ten minutes,
except for the first dataset for which the first forty-three files
were acquired every five minutes. Generally, three frequency
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FIGURE 3. Typical frames of vibration signals for different levels of inner race (left) and rolling element faults (right).

components, the shaft speed related frequencies, the bearing
defect frequencies, and the bearing natural resonance fre-
quencies, appear in the spectrum of the bearing vibration
signals according to the condition of a bearing. For the case
of a bearing defect, the bearing fault fundamental frequencies
appear and as the severity of the fault increases the energy
levels of the shaft speed related and the harmonic frequen-
cies also increase. Additionally, these frequency components
can be stronger or weaker depending on the type of fault
(i.e. inner race vs. rolling element) which can make bearing
fault diagnosis more challenging.

For experimental evaluation, we used the whole
36-minute-long dataset 1 from the test-to-failure experiment
which contains inner race and roller element damages which
occurred in bearings 3 and 4, respectively (there are two
accelerometers for each bearing). After the test-rig runs for a
while, some deterioration in healthy bearings starts to occur
and becomes more pronounced with increasing fault severity
over time. Towards the end of the endurance test, some defect
types become evident in these bearings. Sample time-domain
vibration signals for different levels of inner race and rolling
element faults are shown in Figure 3.

From the analysis of vibration signals, the following ini-
tiation of the early level faults’ impulsive signals and more
chaotic (noise-like) vibrations with higher amplitudes can be
clearly seen as the level of the fault increases. As opposed
to earlier studies that applies decimation (hence reducing
the original sampling rate) and filtering before normalization
in the preprocessing stage, in this study, the frames of raw
vibration signal at its original sampling rate (20.48 kHz) are
normalized and used as input for the classifiers.

B. EXPERIMENTAL SETUP
The compact 1D Self ONN with only 3 operational layers
and 2 dense (MLP) layers is used in the proposed bearing fault
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severity classification framework (Figure 2) for all experi-
ments. Therefore, the proposed solution is computationally
efficient and well-suited for real-time FDD applications. The
1D Self ONN configuration has 16, 12, and 8 neurons in
the 3 hidden operational layers, respectively, and 6 neurons in
the hidden MLP layer. Meanwhile, the MLP output layer size
is fixed as 4 which is the number of classes. The two-neuron
input layer takes the input vibration signals collected from
x- and y-axes of motor’s bearings. The nonlinear activation
function “tanh” is used in all MLP neurons. The kernel size
and the subsampling factor for the first layer of Self ONN are
set as 41 and 8, for the second layer as 41 and 8, and for the
third layer as 9 and 2, respectively. The max-pooling is used
in all sub-sampling layers. We implemented the proposed
1D Self ONN classifier using FastONN library [28] which
utilizes Python and PyTorch. For training, ten-fold cross-
validation method is used to enhance generalization and pre-
vent over-fitting. For all experiments, the maximum number
of BP iterations (epochs) was set to 50. Early-stopping based
on minimum rain classification error threshold of 3% is used
in order to avoid over-fitting. Using the SGD Optimizer, the
learning factor, ¢, is set to 0.2. Mean-Squared-Error (MSE)
is used for BP error calculation. For each data partition,
we repeat five individual BP runs and the average fault clas-
sification results are reported.

C. COMPARATIVE EVALUATIONS

For evaluation, the following three commonly used perfor-
mance metrics in the literature are used: Precision or Positive
Predictivity (Ppr), Recall or Sensitivity (Sen) and Fl-score
(F1). These metrics are distinctive for each class and they
assess the capability of the proposed classifier to distinguish
specific events from non-events. Precision is the rate of
correctly classified events among all detected events; Recall
is the rate of correctly classified events in all events, and
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TABLE 1. Inner race fault severity classification performance of 1D Self-ONNs.

Healthy Early-level fault Moderate-level fault Severe-level fault

0  Configuration Sen  Ppr FI Sen  Ppr FI Sen  Ppr  FI Sen  Ppr FI

1 (16-12-8)+(16-4) 1.0000  1.0000  1.0000 0.9406  0.9500  0.9453 0.8284  0.8325  0.8304 0.8909  0.8775  0.8841
1*  (32-24-16)+(16-4)  1.0000 1.0000  1.0000 0.9509 09675 0.9591 0.8921 0.8475  0.8692 0.9007 0.9300  0.9151
3 (16-12-8)+(16-4) 1.0000  1.0000  1.0000 0.9750 09750  0.9750 0.9282  0.8725  0.8995 0.9033 09575  0.9296
5 (16-12-8)+(16-4) 1.0000  0.9975  0.9987 0.9775  0.9775  0.9775 0.9295  0.8900  0.9093 09139  0.9550  0.9340
7 (16-12-8)+(16-4) 1.0000  1.0000  1.0000 0.9848 09725  0.9786 09146  0.9100  0.9123 0.9263  0.9425  0.9343
9 (16-12-8)+(16-4) 1.0000 1.0000  1.0000 09823 0.9700 0.9761 09116 0.9025  0.9070 09218 09425  0.9320

TABLE 2. Rolling element fault severity classification performance of 1D Self-ONNs.

Healthy Early-level fault Moderate-level fault Severe-level fault

0  Configuration Sen  Ppr FI Sen  Ppr FI Sen  Ppr FI Sen  Ppr  FI

1 (16-12-8)+(16-4) 0.9925  0.9975  0.9950 0.9607  0.9775  0.9690 0.8966  0.8450  0.8700 0.8865 0.9175  0.9017
1%  (32-24-16)+(16-4) 1.0000 1.0000 1.0000 0.9899  0.9850  0.9875 0.9139  0.9025  0.9082 0.9140  0.9300 0.9219
3 (16-12-8)+(16-4) 1.0000 1.0000 1.0000 0.9778  0.9900 0.9839 0.9435  0.8775  0.9093 0.9054  0.9575  0.9307
5 (16-12-8)+(16-4) 1.0000 09975  0.9987 0.9706  0.9900  0.9802 0.9005 0.8825 0.8914 09102 09125 09114
7 (16-12-8)+(16-4) 1.0000 1.0000 1.0000 0.9752  0.9850  0.9801 0.9306  0.9050  0.9176 0.9312  0.9475  0.9393
9 (16-12-8)+(16-4) 1.0000 1.0000  1.0000 0.9800  0.9800  0.9800 0.9071 09275 09172 0.9463  0.9250  0.9355

F1-score is the harmonic mean of the model’s Precision
and Recall. The formulations for these performance metrics
in terms of false negatives (FN), false positives (FP), true
negatives (TN) and true positives (TP) can be expressed as
follows:

TP TP
Ppr = ———, n=——,
TP + FP TP + FN
Fl— 2 x Ppr x Sen ©)
Ppr + Sen

Moreover, comparative evaluations with the state-of-the-
art 1D CNN method are performed in [18]. Recall that 1D
CNN is equivalent to 1D Self-ONN with Q = 1. Specifically,
from the dataset 1, 20 files for each of four classes (healthy,
early-level fault, moderate-level fault and severe-level fault)
are appropriately selected by the experts through spectral
analysis. In this study, for each class, a total of 400 frames of
1000 samples are used for the evaluation (training and testing)
of the proposed model. For each fold in the 10-fold cross-
validation, a total of 360 frames per class were used for train-
ing, while the remaining data was used testing. The inner-race
and rolling-element fault severity level classification perfor-
mance results of the proposed framework using the standard
metrics are presented in Table 1 and Table 2. For inner-race
fault classification, Self-ONNs have a significant superiority
in all metrics resulting around 3-8% F1 gain over the 1D
CNN with the same configuration. Performance gain is more
significant for moderate and severe-level fault recognition.
In this case, 1D Self-ONN classifier with Q = 7 achieved the
best classification performance. For rolling element faults,
Self-ONNs have slightly lower (2-4%) F1 performance gains
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over the CNN. The 1D Self-ONN classifier with Q = 7 also
gives the best performance for this case. When the number
of convolutional neurons are doubled, the performance of the
CNN (indicated as 1* in Table 1 and Table 2) has improved
slightly; however, its recognition performance is still worse
than the Self-ONN with half the neurons especially for mod-
erate to severe-level inner-race faults. This further shows the
superiority of the 1D Self-ONNs over the CNNs for this
problem.

Table 3 presents sample confusion matrices per fault case
corresponding to the best performing 1D Self-ONNs and
CNNs. Since both moderate-level and severe-level bearing
faults have energy content in zones II and III, it is more dif-
ficult to separate the transition point from moderate to severe
level in a run-to-failure setup. The superiority of Self-ONNs
over the CNNs is also visible especially in differentiating
medium- and severe-level faults.

D. COMPUTATIONAL COMPLEXITY ANALYSIS

For computational complexity analysis of the proposed clas-
sifier model, we provide the formulation for calculating the
total number of multiply-accumulate operations (MACs) and
the total number of parameters (PARs) of a generative neuron
inside a 1D Self-ONN. To calculate the number of trainable
parameters, we recall from Section II that, for each kernel
connection, the generative neuron has Q times more learnable
parameters than the 1D CNN. Cumulatively, the number of
trainable parameters, ni of the k™ neuron of 1™ layer, is as

follows:
nh =Ny % K} % QL (10)
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TABLE 3. Sample confusion matrices of 1D Self-ONNs and 1D CNNs (in
parenthesis) for two fault types.

Inner Race Fault (Q=7)

Classification Result
H | ELF | MLF SLF
u 400 0 0 0
Ground “00) | (0) 0) 0)
Truth 0 389 1 0
ELF
() (380) 209 ©)
0 6 364 30
MLF o) | 4 | 333 (43)
0 0 23 377
SLF
) ) 49 (351)

Rolling Element Fault (Q=7)

Classification Result
H ELF MLF SLF
H 400 0 0 0
Ground (399) @)) 0) 0)
Truth 0 394 6 0
ELF
3) (39D (6) 0)
0 10 362 28
MIFL @ [ as | @3 | @)
0 0 21 379
SLF
(U] (0) (33) (367)

In (10), N;_ is the number of neurons in layer / — 1, K,ﬁ is
the kernel size used in the neuron and Qi is the approximation
order selected for this neuron. Finally, to calculate the total
number of MAC operations, in order to produce a single
element in the output, we require K,ﬁ * Qi MAC operations
for each output map of the previous layer [29].

Generalizing this, we can write the following:

MAC! = Nj_1 * ‘x}k‘ « K| %0l (11)

where |-| is the cardinality operator. For notational conve-
nience, the bias term and the cost of Hadamard exponenti-
ation are omitted from (11). All the experiments were carried
out on a 2.2GHz Intel Core 17-8750H with 8 GB of RAM and
NVIDIA GeForce GTX 1050Ti graphic card. Both training
and testing phases of the classifier were processed using the
GPU. Along with the average time complexity, using the
formulations in (10) and (11), we provide the overall PARs
and MACs for both network models in Table 4.

TABLE 4. Network models and average classification times.

Network | Layer | Layer | Layer | PARs MACs Avg.
1 2 3 ™) Time
size size size (ns)
1D 32 24 16 37980 5.078 5.4
CNN*
1D 16 12 8 10296 1.908 5
CNN
1D Self- 16 12 8 70584 | 13.253 9
ONN
Q=7

For the GPU implementation, specifically, the total time
for the classification (FP) of a 50ms (1000 samples) input
segment is 9 usec for a Self-ONN classifier with Q = 7
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(for both inner-race and rolling element faults detection).
Such a computation speed (> 5000 times of real-time speed)
naturally allows a real-time execution even on low-power
mobile devices. As a secondary important advantage of the
proposed 1D Self-ONN, this real-time performance attributed
to the compact nature of the network along with its high
learning capacity may enable the diagnosis of more complex
systems made of several RM components with the same tool.

V. CONCLUSION

In this study, a new RM bearing fault severity classification
and condition monitoring system is proposed based on a novel
1D Self-ONN model. The self-organizing capability of the
proposed network voids the need for prior operator search
runs and presents a crucial computational advantage over
ONN:Ss. Our objective is to push the frontier set by the land-
mark study [18] based on adaptive 1D CNNs by achieving the
state-of-the-art bearing fault classification performance with
an elegant computational efficiency. Each generative neuron
of a Self-ONN can individually optimize the nodal operator
function of each kernel element resulting in a neuron-level
heterogeneity maximizing the network diversity and per-
formance. Overall, in this new-generation machine learning
paradigm, the traditional weight optimization in conventional
CNNs has entirely been transformed into an operator opti-
mization process. Nevertheless, as demonstrated in this study,
Self-ONNss can still be implemented using 1D convolutions
and, a Self-ONN and a CNN with the same configuration
have a similar computational complexity with respect to the
theoretical parallelizability of the operations.

The proposed system is tested with real bearing vibra-
tion signals from the well-known IMS bearing dataset and
the experimental results reveal its efficacy and potential for
providing continuous condition monitoring and bearing fault
severity classification. Low computational complexity of the
proposed FDD algorithm also leaves more bandwidth for
other possible metering/monitoring functions implemented
on the system. In a fair evaluation with comparable network
configurations, Self-ONNs outperform CNNs with a signif-
icant margin in both inner race and rolling element fault
recognition cases. Recognition of the fault types over other
signals (e.g., current or acoustic) for continuous monitoring
applications will be part of our future work.

SUPPLEMENTARY MATERIAL
Bearing faults are mechanical defects and they cause
vibration at fault related frequencies. The bearing defect
fundamental frequencies can be determined if both bearing
geometry and shaft speed are available. These bearings com-
prise of a set of balls or rolling elements rotating inside an
inner and outer ring. In this study, bearing fault detection
from raw vibration data is considered. Typical ball bearing
geometry is depicted in Figure 4.

Bearing faults often cause vibration at the frequencies
associated with the fault. These specific frequencies can be
used for identifying the different types of faults [27].
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Pitch Diameter (PD)

Ball Diameter (BD)

FIGURE 4. Ball bearing geometry.

When the motor is running, the cage turns at a linear
velocity, which is the mean of the inner and outer race linear
velocities. The cage linear velocity can be used to compute
the fundamental cage defect, fcp:

Ve Vi+V,
feop=—=—7— (12)
re D,
where V., r., Vi, V,, and D, are velocity of the cage, radius of
the cage, velocity of the inner race, velocity of the outer race,
and diameter of the cage, respectively. Then,

f Zfiri + foro

b PD
_ 1 ‘PD—BDc0s9+ PD + BDcos 6 (13)
~ pp\" 2 ¢ 2

where f;, f,, i, o, PD, BD, and 6 are frequency of the inner
race, frequency of the outer race, radius of the inner race,
radius of the outer race, pitch diameter, ball diameter and
contact angle of the ball respectively. For motors, the housing
is stationary and the outer race is mounted to the housing. The
inner race and the shaft are installed together and both rotate
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at the same angular speed. As a result, it can be assumed the
following:

fo=0and f; = fim (14)
where f},;, is the mechanical rotor speed in Hertz. Now, equa-
tion 2 can be written as

1 BD
fep = Efrm 1- 50059 (15)

The inner race defect frequency, fip, is associated with
the rate at which bearing balls traverse a defect point on the
inner race. Each ball passes the defect point at the frequency
difference of cage and inner race. Since there are n balls, the
frequency is linearly proportional to the number of balls. The
fundamental frequency of the inner race defect, then, can be
computed as

Jip = nlfep —fil (16)
Expanding (16),
fip =n firi;‘goro —f
_, ﬁ (Vc _ BD;OS@) +f0 (rc + BD(Z:OSO) _f
PD !
n BD cos 6
=7 |i—Jo) (1 + T) (17)

Substituting fo = 0 and f; = fym, fip becomes

n BD
Jfip = Efrm (1 + D cos@) (18)

The fundamental ball defect frequency, fzp, results from
the rotation of the ball about its own axis through its center.
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FIGURE 5. Spectrum of different severity levels of inner race and rolling element faults.
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The ball defect frequency can be formulated as

i

Jep = |(fi — fep) é‘ = |(fo —fep
LR S BD? cos? 6 (19

28D |7 PD?

Substituting fo = 0 and f; = fym, fpp becomes

PD BD? cos? 6
= - — 20
fBD 2BD frm ( PD2 ) ( )

Motor fault related frequency components usually show
up in close neighborhood of fundamental frequency in motor
vibration signal spectrum. Their magnitudes are very small
compared to the magnitude of power system fundamental
frequency. Therefore, the presence of electrical noise and
dominant power system fundamental component in the vibra-
tion frequency spectrum complicate the motor fault detection
process. Usually notch filters are used for pre-processing of
motor current data to suppress power system fundamental
frequency in the spectrum. From the analysis of vibration
signals, starting from the early level faults more chaotic
(noise-like) vibrations with higher amplitudes can be clearly
seen as the level of the fault increases. This behavior can also
be clearly observed in the corresponding amplitude spectrum
plots in Figure 5.
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