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Abstract— Water-fat separation is a non-linear non-
convex parameter estimation problem in magnetic reso-
nance imaging typically solved using spatial constraints.
However, there is still limited knowledge on how to separate
in vivo three chemical species in the presence of magnetic
field inhomogeneities. The proposed method uses multiple
graph-cuts in a hierarchical multi-resolution framework to
perform robust chemical species separation in the breast for
subjects with and without silicone implants. Experimental
results show that the proposed method can decrease the
computational time for water-fat separation and perform
accurate water-fat-silicone separation with only a limited
number of acquired echo images at 3 T. The silicone-
separated images have an improved spatial resolution and
image contrast compared to conventional scans used for
regular monitoring of the silicone implant’s integrity.

Index Terms— Chemical shift encoding-based water-fat
separation, dixon imaging, breast magnetic resonance
imaging, hierarchical decomposition, silicone implants.

I. INTRODUCTION

S ILICONE implants are commonly used for breast aug-
mentation or breast reconstruction after mastectomy.

However, aging implants weaken and there is the risk
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for ruptures leading to inflammation or silicone granuloma
formation [1]. Magnetic Resonance Imaging (MRI) is a
sensitive method for monitoring the implant’s integrity [1].
Clinically, T2-weighted turbo spin echo acquisitions using
double inversion recovery (DIR) for water and fat suppression
or combining frequency-selective water suppression and short
tau inversion recovery (STIR) for fat suppression are used
to generate silicone-only images with bright silicone signal
[2], [3]. However, the acquired silicone-only images typically
suffer from low signal-to-noise ratio (SNR), coarse inter-
slice resolution, motion sensitivity and long scan times. For
example, the conventional silicone-only sequence in our insti-
tution applies an acquisition voxel size of 3 mm in the slice
selection direction, whereas an isotropic scan of higher reso-
lution would enable the assessment of the silicone’s integrity
for different image orientations and reduce partial volume
effects.

Chemical shift encoding-based water-fat separation (CSE-
WFS) has been previously combined with STIR to perform
water-silicone separation in fat suppressed T2-weighted turbo
spin-echo imaging [4]. CSE-WFS has been also recently
combined with multi-echo gradient echo imaging to mea-
sure the fat fraction and magnetic susceptibility properties
in the breast. Thus, CSE-WFS enables the quantification of
breast density [5] using the proton density fat-fraction (PDFF)
[6], [7], as high breast density has been identified as a risk fac-
tor for breast cancer [8]. The water-fat separation problem is
a separable non-linear non-convex least-squares optimization
problem and can be reformulated as a field-map estimation
problem. Often, separation relies on a spatial smoothness
constraint due to sensitivity to noise and the ambiguity of the
model when only a single species is present. Previous algo-
rithms to solve the water-fat separation problem include region
growing schemes [9], [10], multi-resolution optimization
[11]–[14], graph search [15]–[18] or also neural networks [19].

On the one hand, graph search-based algorithms have
been particularly effective in solving the water-fat separation
problem in the presence of large field-map variations. The
first introduced graph search-based formulation of the water-
fat separation problem iteratively evaluated two field-map
candidates per voxel based on a cost function [15]. Upon
convergence to a specified criterion, the field-map solution
was optimal to an exponentially large set [15] but did not
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necessarily converge to the global minimum. Single-min-cut
graph-cut algorithms were introduced with global conver-
gence, non-smoothed field-maps and inter-slice regulariza-
tion [16]–[18]. The rapid globally optimal surface estimation
algorithm [17] and the variable-layer single-min-cut graph-cut
algorithm (vlGC) [18] restricted the solution voxel-wise to its
set of local minima. The vlGC algorithm allowed furthermore
for a varying number of minima per voxels and was able
to resolve large field-map variations [18]. However, graph-
cut algorithms still often suffer from long processing times
and, thus, may be difficult to incorporate into standard clinical
workflows.

On the other hand, multi-resolution algorithms solve the
field-mapping problem using different image resolutions by
starting from course graining and concluding with fine details.
Multi-resolution algorithms rely on the assumption of a slowly
varying field-map aiming for an increased robustness in
the presence of noise. The first presented approach used a
golden section search at the coarsest resolution and refined
the field-map for increasingly finer resolutions [11]. In this
method, field-mapping was susceptible to water-fat swaps if
the initialization was wrong (i.e. shifted center frequency).
Another multi-resolution optimization algorithm used direct
phase estimation to avoid field-map wrapping [12]. The
method could handle arbitrary species showing separation
results for a single slice of a water–oil–silicone phantom.
However, the method was not able to estimate an unwrapped
field-map which can be of high importance for subsequent
processing steps, such as quantitative susceptibility map-
ping [20]. In [13], the presented algorithm combined the multi-
resolution approach with graph-cuts. The single quadratic
pseudo-Boolean optimization (QPBO) graph-cut algorithm
was applied in each layer of the multi-scale framework.
Field-map solutions were propagated from coarse to finer
scales if voxels were not resolved by the graph-cut. Results
showed promising improvements for noise-dominated regions,
although accuracy was only slightly improved compared to
the single-resolution graph-cut in [16]. Field-map unwrapping
needed to be performed separately. Another study also showed
the advantage of incorporating spatial smoothing in the QPBO
algorithm [14].

Despite the availability of the above algorithms, there is
still limited knowledge on how to simultaneously separate
three chemical species in the presence of water, fat, and
silicone in in vivo breast imaging. Incorporating silicone to
the signal model increases the complexity of the chemi-
cal species separation problem. Water-fat-silicone separation
was already performed in a phantom [12], [21], but both
approaches were not applied in vivo and are limited due to
the needed field map initialization or direct phase estimation.
Initial results on in vivo water-fat-silicone separation applied
a modified single-resolution vlGC algorithm showing success-
ful separation for 6 echoes but significantly reduced noise
performance for fewer echoes leading to water-fat-silicone
swaps [22].

The present work aims to develop a methodology for
the joint estimation of water, fat and silicone images and
the field-map. A hierarchical decomposition of the problem

combined with a multi-resolution formulation of the vlGC
algorithm is developed for faster processing times. At the same
time, we aim at comparable field-map accuracy in subjects
without silicone implants and a high robustness, also with lim-
ited acquired echoes, for in vivo separation for subjects with
silicone implants. Phantom and in vivo MR measurements are
performed to compare the developed method with the vlGC
algorithm and to evaluate its ability to overcome limitations
of the conventional silicone-only scan.

II. THEORY

CSE-WFS encodes the difference in resonance frequency
for the different chemical species by acquiring several
echo images at different echo times. Gradient echo [21],
[23]–[25], spin echo [26] and fast spin echo [4], [27]
sequences have been proposed for water-fat imaging
and might be extended for an additional third chemical
species.

A. Signal Model

In water-fat imaging, the complex voxel signal sWF(tn) at
an echo time tn can be modeled taking into consideration T ∗

2
decay effects [23], [28] and a multi-peak model for the fat
spectrum [28]. Here, an equal transverse relaxation rate R∗

2 is
assumed for all peaks [28].

sWF(tn) = (ρW + ρFcn)e
γ tn , γ = i2π fB − R∗

2 (1)

with ρW, ρF the complex species signals of water and fat and
γ = i2π fB − R∗

2 a coefficient describing the T ∗
2 -decay and the

local frequency shift due to the static field inhomogeneity fB.
For the fat spectrum cn , P is the total number of spectral peaks,
αp the relative amplitude and fF,p the resonance frequency
relative to water for the p-th fat peak:

cn =
P�

p=1

αpei2π fF,ptn with
P�

p=1

αp = 1 (2)

In water-fat-silicone imaging, the signal model needs to
be extended to include the complex silicone signal ρS. The
silicone component can be specified as a single peak with
relative resonance frequency fS . Previous studies have shown
a chemical shift of approximately -4.9 ppm for the silicone
relative to water at body temperature [29].

sWFS(tn) = sWF(tn) + ρSei2π fS tn eγ tn (3)

The signal model can then be rewritten using the matrix
representation:

⎛
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Fig. 1. Noise performance for water-fat-silicone separation depending
on the echo spacing ΔTE at 3 T with constant TE1 = 1.58 ms, R∗

2 =
40 Hz, fB = 0 Hz. An exact knowledge of the field-map was assumed. The
number of signal averages (NSA) for the water (W), fat (F) and silicone (S)
signal amplitude is shown for different water-fat-silicone fractions and
4 echoes.

B. Noise Performance

The noise properties of the separated images are dependent
on the assumed signal model and can be optimized by the
choice of echo times. A theoretical limit can be estimated
by the minimal noise variance using the Fisher Information
Matrix in the Cramér-Rao lower bound (CRLB) analysis
[30], [31]. The noise variance can be expressed by the number
of signal averages (NSA) [30], [31].

Figure 1 summarizes the noise performance depending on
the echo spacing �TE for water-fat-silicone separation with
4 echoes at 3 T. The noise performance is optimal for an echo
spacing of about 1 ms. Higher echo spacings show additional
maxima for some parameters but not simultaneously for water,
fat and silicone. A worse performance is reported for �TE ≈
1.6 ms corresponding to the echo times when the silicone
phasor is similar in all acquired echoes (ei2π fS�TE = 1).

C. Parameter Estimation

Complex-based and magnitude-based parameter estima-
tion techniques have been presented for water-fat separation.
Complex-based parameter estimation needs to correct for
several phase errors, especially for bipolar gradient echo acqui-
sitions [25] but has demonstrated a superior noise performance
and fat modelling accuracy compared to magnitude-based
techniques [32].

The present work is based on a complex-based parameter
estimation technique using magnitude and phase images. Four

Fig. 2. Residual C(fB) (black line) for the water-fat (left) and water-fat-
silicone (right) signal model and 6 echoes at 3 T. The model predicted
water (blue), fat (green) and silicone (orange) signals are depicted using
colored lines. Two voxels with different simulated chemical composition
(W: water, F: fat, S: silicone), fat fraction of 20% and no silicone (top) or
pure silicone (bottom), true field-map of 0 Hz, R∗

2 = 40 Hz and Rician
noise (SNR = 100) are shown. The residuals are shown for one period
length fB,period of the field-map.

echoes are the minimum required echo images to solve Eq. 3
with its seven free parameters if T ∗

2 decay is neglected.
The mean-square error C(γ ) between model and mea-

sured data is minimized voxel-wise for parameter estimation.
First, it is solved for the field-map using variable projection
(VARPRO) [33]:

C(γ ) = �s − �(γ )ρ�2
2 = �[I − �(γ )�†(γ )]s�2

2 (5)

Water, fat and silicone signals can be computed based on
the field-map:

f̂B = argmin
fB

C( fB) = argmin
fB

C(γ = i2π fB)

ρ̂ = �†(γ = i2π ˆfB)s (6)

R∗
2 can be neglected for field-map estimation due to uncor-

related estimates but needs to be considered for PDFF
estimation:

R̂∗
2 = argmin

R∗
2

C(R∗
2) = argmin

R∗
2

C(γ = i2π f̂B − R∗
2 ) (7)

The residual C( fB) is compared in Fig. 2 for two dif-
ferent water-fat-silicone fractions and for the water-fat and
water-fat-silicone signal models. In the case of constant echo
spacings, the residual as a function of fB is periodic with
period fB,period = 1

�TE . The water-fat-swapped solution has
a higher residual error due to the multi-peak modelling of
fat and, therefore, mitigates the ambiguity of the chemical
species separation for a fat-containing voxel. C( fB) shows an
additional minimum corresponding to the silicone solution if
the water-fat-silicone model is assumed. The minima are well
separated in Fig. 2 for 6 echoes, but the minima are strongly
broadened for only 4 acquired echoes (Fig. 3). In such a case of
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Fig. 3. Residual C(fB) for 4 and 6 echoes and low SNR (SNR = 10).
A simulated voxel with only silicone, true field-map of 0 Hz and R∗

2 =
40 Hz is shown. At the top, the minima are distinctive for 6 echoes. In the
center, 4 echoes were used for simulation leading to a plateau with no
minima at 0 Hz. At the bottom, the voxel was averaged with neighboring
voxels using a 2 ×2x2 kernel leading to a better noise performance. The
residuals are shown for one period length fB,period of the field-map.

broadened minima, the SNR needs to be increased for reliable
field-map estimation, e.g. averaging of neighboring voxels.

III. PROPOSED METHOD

A method is developed using hierarchical decomposition
to solve the separation problem based on multiple graph-cut
layers. Each graph-cut layer has a specific function and the
information of previous layers is incorporated by inserting
these field-maps as priors for subsequent graph-cut processing
(Fig. 4).

A. Single Layer: Graph-Cut Algorithm for Field-Mapping

The single graph-cut layer is based on the vlGC algorithm
for water-fat separation [18]. A penalized maximum likelihood
cost function is used as a smoothness constraint and the
minimization problem is transformed to a surface estimation
problem using the graph-cut algorithm proposed in [34]: An
energy function E(S) is minimized by computing a maximum
flow of a graph with S(r) a local minima of the mean-square
error C(r, fB):

S(r) ∈ Br = {x ∈ A | x = argmin
y∈U o,U⊂A

C(r, y)}
for r ∈ M = {(x, y, z) | MIPTE(x, y, z) > T ∗ MIPTE,max}

(8)

with Br the set of graph nodes for the voxel r given by the
local minima of C(r, fB) in the sampling range, A the set of

sampling points, Uo the interior of a neighborhood U and M
the mask to distinguish between signal and no-signal regions.
MIPTE is the maximum signal intensity projection over echo
times, MIPTE,max its maximum value and T is a threshold.

The Boykov-Kolmogorov algorithm [35] is applied for
max-flow computation and the field-map is reconstructed
based on the partition of the minimum cut [18], [34].

In this work, several parameters are defined for the
graph-cut algorithm which can be adapted for different layers:

1) Spatial Resolution: The graph-cut can be performed on
a downsampled signal since the field-map is slowly varying.
The 3D-image array is first scaled to match the aimed voxel
size (Section III-B) in slice and in-plane direction using
second-order spline interpolation. The residual C(r, fB) is then
computed at the reduced spatial resolution. After graph-cut
solving, the resulting field-map can be low-pass filtered using
a Gaussian kernel (σ = ασ with ασ = 1 an empirically chosen
value) and is reversely scaled for the original spatial resolution
based on the reconstruction voxel size.

Interpolation is hampered in masked regions due to missing
information outside of the mask. Image inpainting is thus
applied slice-wise to fill missing phase and field-map infor-
mation for interpolation near to the mask boundary using
the algorithm in [36]. The algorithm uses a fast marching
method [37] to propagate the information from the unmasked
image regions along the image gradient by computing a
weighted average of the known image values.

2) Energy Function and Regularization Parameter: The
energy function is extended for an additional data cost term
given by the residual C(r, fB) compared to the vlGC algo-
rithm [18]:

E(S) = 1

λ

�
r

d(MIPTE) ∗ dr(C(r, S(r)))

	 
� �
data cost term

+
�

r

�
s∈N(r)

|S(r) − S(s)|2
	 
� �

smoothness term

(9)

with N(r) the voxel neighborhood defined by directly adjacent
voxels. d , dr are a global and a voxel-wise mapping to
the interval [0, 1], respectively. The regularization parameter
λ determines the compromise between spatial smoothness
and data consistency and is optimized to minimize water-fat-
silicone swaps in the validation dataset.

Intra-edges between graph nodes are calculated using the
data cost term and inter-edges are calculated using the smooth-
ness term [34].

3) Signal Model: The residual C(r, fB) can be computed for
different assumed signal models (e.g. Eqs. 1 and 3). A lower
regularization (λ = 10−4) is used for the water-fat-silicone
model to account for the increased number of minima with
different depths compared to the water-fat model.

4) Field-Map Priors: The field-map solution of previous
graph-cut layers can be used as an initialization for the graph-
cut algorithm. In detail, the sampling range per voxel Ar
can be chosen in the neighborhood [ f0, f1] of the field-map
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Fig. 4. Schematic diagram for two hierarchical multi-resolution methods: (a) hierarchical multi-resolution method for water-fat separation (hmrGC-wf),
(b) hierarchical multi-resolution method for water-fat-silicone separation (hmrGC-wfs). Both methods consist of layered graph-cuts for field-mapping
(blue area) and layers for species signal, R∗

2, proton density fat-fraction (PDFF) and proton density silicone-fraction (PDSF) estimation. The graph-cut
layers used as field-map priors for sampling range estimation and graph nodes insertion are denoted.

prior fprior(r):

Ar = {x ∈ [ fprior(r) − f0, fprior(r) + f1] |
x = fprior(r) − f0 + k ∗ � f, k ∈ N} (10)

with � f the sampling stepsize. Alternatively, the prior can
be added as nodes to the graph. The set of local minima
Br is therefore extended for the set containing the field-map
prior if there is no local minimum in a specified neighborhood
[ f �

0, f �
1]:

B �
r = Br ∪ { fprior(r)|

Br ∩ [ fprior(r) − f �
0, fprior(r) + f �

1] = ∅} (11)

B. Multiple Layers: Hierarchical Multi-Resolution
Graph-Cuts

1) Water-Fat Separation (hmrGC-Wf): A three layer multi-
resolution graph-cut method is defined with a single signal
model for water-fat separation (Fig. 4 a): First, water-fat
separation is performed for a downsampled signal (voxel size:
5.5 mm) and a large sampling range (e.g. 2.5 ∗ fB,period). The
regularization is reduced (λ = 10−4) due to higher SNR in the
low-resolution signal. The resulting low-resolution field-map
is used as an unwrapped initialization for the next layer. Two
subsequent layers are performed with medium (Mid-res, voxel
size: 1.5 mm) and high resolution (High-res, reconstructed
voxel size). If the reconstructed voxel size is equal or larger
than 1.5 mm in the slice direction and the in-plane directions,
the medium resolution layer is skipped. Additionally, the
solution of the Mid-res layer is directly inserted as graph nodes
to the High-res layer to account for voxels dominated by noise.

2) Water-Fat-Silicone Separation (hmrGC-Wfs): The pro-
posed method for breast MRI performs water-fat or water-fat-
silicone separation based on the presence of silicone implants.
Hyperparameters for the several graph-cut layers are summa-
rized in Table I.

First, unwrapping and a medium resolution field-map calcu-
lation is performed similarly to hmrGC-wf. A water-fat signal
model is assumed, although silicone implants may be present.
Thus, in a subsequent Low-res (WFS) and Mid-res (WFS)
layer, a sampling neighborhood [ f0, f1] is chosen based on
the water-fat prior allowing swapping from fat to silicone:

[ f0, f1] = [−ξ, ξ + �WF] (12)

with ξ = αξ fcenter a margin, αξ = 0.4 ∗ 10−6 an empiric
hyperparameter, fcenter the center frequency and �WF =
f �
B,water − fB,fat the field-map frequency distance between the

fat fB,fat and the upward water solution f �
B,water = fB,water +

fB,period. The silicone peak is within this distance.
After the Low-res (WFS) layer, the proton density silicone-

fraction (PDSF) is calculated. Calculation is preformed simi-
larly to the PDFF with correction for noise bias effects using
a magnitude discrimination approach [6], [38] based on a
generalized proton density fraction ηi with i ∈ {W, F, S} the
different chemical species:

ηi =

⎧⎪⎪⎨
⎪⎪⎩

|ρi |
| � j ρ j | if

|ρi |�
j |ρ j | > 0.5

1 − | � j �=i ρ j |
| � j ρ j | otherwise

(13)

PDSF = ηS (14)
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TABLE I
GRAPH-CUT PARAMETERS FOR THE HIERARCHICAL

MULTI-RESOLUTION METHOD FOR WATER-FAT(-SILICONE)
SEPARATION (HMRGC-WFS). THE SAMPLING AND

INSERTION NEIGHBORHOODS ARE GIVEN IN PPM

(fB[PPM] = fB[HZ]/fCENTER [HZ] ∗ 106) WITH fCENTER

THE CENTER FREQUENCY

If NC
Ntotal

> 0.01, silicone is detected. Ntotal is the total number
of voxels and NC is the number of elements in the set C with
C being the largest set of connected voxel with PDSF > 0.6.
Otherwise, water-fat separation with an additional High-res
(WF) graph-cut layer is performed. The presence of silicone
implants can also be prior information.

If silicone is present, the resolution of the water-fat-silicone
field-map is increased in the Mid-res (WFS) and High-res
(WFS) layer. The solution of the water-fat and low resolu-
tion water-fat-silicone separation is added as graph nodes to
account for noise-dominated voxels.

To improve the field-map in tissue, a voxel-dependent
signal model is applied in the last Refinement graph-cut layer.
If PDSF < 0.1, it is assumed that no silicone is present in
these voxels and, thus, the water-fat signal model is assumed
(Fig. 4).

Based on the global optimal field-map yielded by the
layered graph-cuts, the images are calculated. Proton density
fat fraction (PDFF) maps are calculated with correction for
R∗

2 using the generalized proton density fraction PDFF = ηF.
If no silicone implants are present, the water-fat signal model
is assumed for the image and R∗

2 calculation. Otherwise,

TABLE II
MR SCAN PARAMETERS FOR THE PHANTOM AND IN VIVO

MEASUREMENTS. A MONOPLOAR TIME-INTERLEAVED MULTI-ECHO

GRADIENT ECHO SEQUENCE [25] WAS USED

the voxel-dependent signal model is assumed based on the
threshold PDSF < 0.1.

C. Implementation Details

The sampling step size for field-mapping is set to 2 Hz
and the sampling range for the first graph-cut layer is set to
α f ∗[− fB,period/2, fB,period/2] (α f = 2 for the phantom study,
α f = 2.5 for the in vivo study). For R∗

2 , the global minimum
is searched voxel-wise in a sampling interval [0, 500] Hz with
a sampling step size of 2 Hz. For phantom measurements,
a threshold T = 2.5% is applied for the mask M . A threshold
T = 7.5% is used for in vivo measurements. The value for T
was chosen empirically based on the scan’s noise performance
to ensure connected voxels in the low-resolution graph-cut
layers.

The proposed framework was implemented in Python. The
graph-cut algorithm itself is intrinsically limited to a single
CPU core and uses the PyMaxflow1 library for graph construc-
tion and solving. The source code, including phantom data and
examples used for this study, will be made publicly available:
https://github.com/BMRRgroup/fieldmapping-hmrGC

IV. EXPERIMENTS AND RESULTS

A. MR Measurements

Phantom and in vivo measurements were performed to test
the method and show the generalizability. MR scan parameters
are summarized in Table II. Either all 6 echoes or the first
4 echoes were used for water-fat-silicone separation.

1https://github.com/pmneila/PyMaxflow
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Fig. 5. Water-fat-silicone separation in the phantom for different echo
times and number of echoes. The phantom was composed of water-fat
vials inserted in water and a silicone implant. ΔTE = 1.28 ms was the
echo spacing for breast imaging with the applied gradient echo sequence
(Table II). ΔTE = 0.99 ms corresponded to the shortest echo times for
the phantom scan. The SNR and the water-fat suppresion perfomance
(S/S0) were evaluated for the silicone images.

1) Phantom Measurements: A commercially available
water-fat phantom (Calimetrix, Madison, WI, United States)
and a silicone implant, placed next to each other, were scanned
with different echo times using a monopolar time-interleaved
multi-echo gradient echo sequence [25] (Table II). Each scan
was acquired twice for a subsequent SNR calculation based
on the difference image. A peanut oil fat model accounting for
the temperature shift of the water peak was assumed for post-
processing [40]. The phantom enclosed vials with a different
fat fraction ranging between 0 and 100%, immersed in a water
bath. Magnetic resonance spectroscopy (MRS) was performed
for all vials to estimate a reference fat fraction (Stimulated
Echo Acquisition Mode (STEAM), echo time TE = [10, 15,
20, 25, 75] ms, repetition time TR = 5000 ms, mixing time
TM = 17 ms, voxel size = [10, 10, 30] mm, NSA = 4). Peak
fitting was performed using a custom MRS toolbox (10-peak
fat model and single water peak) [41].

2) In Vivo Breast Measurements: Clinical routine MR image
data of the breast in 20 patients were retrospectively analyzed.
The in vivo study part was approved by the local institutional
review board (Klinikum rechts der Isar, Technical University
of Munich, Munich, Germany). The present in vivo dataset
contained MR scans of 20 women using the aforementioned
gradient echo sequence. 10 subjects had silicone implants with
5 subjects with bilateral silicone implants and 5 subjects with a
unilateral silicone implant (Table II). Method hyperparameters
were adjusted based on a validation dataset with similar scan
parameters. An in vivo bone marrow fat model was assumed
for post-processing [42], [43]. Additionally, the dataset con-
tained silicone-only scans with a water- and fat-suppressed
sequence, which is used clinically at our institution to assess

Fig. 6. Mean proton density fat-fraction (PDFF) for different water-
fat compositions. Chemical shift encoding-based gradient echo imaging
using the hmrGC-wfs separation algorithm (y-axis) was compared with
magnetic resonance spectroscopy (MRS, x-axis). The black line is the
identity line. An exemplary PDFF map of the phantom is shown in the
bottom right corner.

implant integrity (T2-weighted turbo spin echo DIR acqui-
sition, TE = 65 ms, inversion time TI1/TI2 = 3100/220 ms,
TR = 15.7 s, scan time = 3:08 min, field of view FOV =
220×388.2×187.8 mm3, acquisition voxel size = [1.25, 1.88,
3] mm, C-SENSE with R = 3.5).

B. Evaluation Metrics

The performance of the proposed method was tested by
comparing computational speed, the number of field-map
swaps and the noise and suppression performance with the
vlGC algorithm [18] and different echo times. Results were
compared additionally to MRS and a conventional silicone-
only scan. For water-fat-silicone separation, the vlGC algo-
rithm was modified for the water-fat-silicone signal model
(vlGC-wfs) [22]. The vlGC-wfs algorithm also applies a data
cost term in its energy function with λ = 10−4.

To count chemical species swaps, the field-map, water, fat
and eventually silicone images were visually evaluated side
by side for every slice and swaps were determined by rapid
changes in the field-map and an abnormal water, fat or silicone
distribution.

SNR was calculated based on two acquisitions with similar
scan parameters (intensities I1 and I2 in a region of interest
(ROI)) [44]:

SNR = 1√
2

meanr∈ROI (I1(r) + I2(r))
stddevr∈ROI (I1(r) − I2(r))

(15)

The water and fat suppression was quantified using the ratio
between the mean signal intensity in the silicone implant S
and a water-fat-only region S0:

S/S0 = meanr∈ROIS I (r)

meanr∈ROIWF I (r)
(16)

For the phantom, a ROI in the center of the silicone
implant (41.3×13.8 mm2) was selected for the SNR and PDSF
evaluation. Another ROI in the center of the water-fat phantom
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Fig. 7. Field-mapping results for the hierarchical multi-resolution method (hmrGC-wfs) and the variable-layer single-min-cut graph-cut methods
(vlGC, vlGC-wfs). Axial and sagittal slices for the field-map and sagittal water, fat (and silicone) images are shown for two subjects (a: with silicone,
b: without silicone). Arrows indicate water-silicone swaps.

(41.3 × 41.3 mm2) was chosen for computing the S/S0 ratio.
PDFF quantification in the phantom was evaluated by defining
central ROIs of size 13.8×13.8×27.5 mm3 for each water-fat
vial.

For the in vivo breast measurements, different ROIs (approx.
16.5×16.5 mm2) were placed in breast tissue and the silicone
implant to quantify the water-fat suppression (S/S0 ratio) in
the seperated silicone images and in the magnitude images of
the conventional silicone-only scan.

C. Phantom Results

Figure 5 shows water, fat and silicone images and the field-
map in the phantom for different sequence parameters. The
echo times TE1/�TE and the number of acquired echoes NTE
were varied. Robust water-fat-silicone separation is shown
for each combination. A reduced noise performances can
be observed for 4 echoes. The mean PDSF and standard
deviation were evaluated in the silicone implant: 6 echoes,
�TE = 0.99 ms: (102.6 ± 1.0)%; 6 echoes, �TE = 1.28 ms:
(99.9 ± 1.4)%; 4 echoes, �TE = 0.99 ms: (98.9 ± 1.9)%;
4 echoes, �TE = 1.28 ms: (97.7±1.8)%. The measured SNR

was in agreement with the theoretical CRLB analysis. The
silicone images showed an improved water-fat suppression for
the shortest possible echo times (�TE = 0.99 ms).

The mean PDFF for different water-fat compositions was
compared with MRS in Fig. 6. A good agreement between the
separation-based PDFF using the hmrGC-wfs algorithm and
the reference was found (R2 > 99.8%). Only small differences
were found for different applied sequence parameters.

D. In Vivo Results

The hierarchical multi-resolution method performed robust
separation in the breast without water-fat-silicone swaps for
all 20 subjects. For some subjects, swaps occurred in noise-
and motion-dominated regions outside of the breast and at the
edge of the FOV.

Figure 7 compares the field-map for the hierarchical multi-
resolution method and the vlGC and vlGC-wfs algorithm. The
subject with silicone implants showed water-silicone swaps
when the vlGC-wfs algorithm was used. Water-silicone swaps
occured especially in motion-affected regions (i.e. the heart)
or at the implant’s border. For the subject without silicone
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Fig. 8. Computational speed for the hierarchical multi-resolution
methods (hmrGC-wfs, hmrGC-wf) and the variable-layer single-min-cut
graph-cut methods (vlGC, vlGC-wfs). Subjects with and without implants
were evaluated separately for 4 echoes and mean values and standard
deviations are shown.

implants, similar field-maps, except for regions dominated by
noise, were reported. Separated images had a similar noise
performance for the hmrGC-wfs and the vlGC-wfs methods.

The computational speed comparison in Fig. 8 shows a
significant decrease in computational time for the hmrGC
methods compared to the vlGC and vlGC-wfs methods.
The computational time was increased for the hmrGC-wfs
method compared to the hmrGC-wf method. In the process-
ing of the 6 echoes data, the hmrGC methods took similar
time but processing time was significantly increased for the
vlGC/vlGC-wfs methods (multiple hours). Lower memory
constraints for the hmrGC methods also allowed the execution
on machines with limited RAM (< 32 GB).

Sagittal and axial water, fat and silicone images and the
field-map are shown in Fig. 9 for 6 and 4 echoes. Images
showed a good agreement for the different number of echoes
and no water-fat-silicone swaps. The region corresponding to
the silicone implant in the 4-echo water and fat images and
the field-map look noisier compared to the 6-echo acquisition.
This is consistent with the lower noise performance observed
in the phantom (Fig. 5) for 4 echoes. The water-fat suppression
was slightly improved in the silicone image based on 6 echoes
(S/S0 = 32 vs. S/S0 = 26).

Figure 10 presents three subjects with silicone implants
and compares the clinically used silicone-only scan with the
silicone image based on the proposed hmrGC-wfs method
using the 4-echo gradient echo data. Additionally, the PDSF
is shown as an additional contrast which can be used in the
quantitative assessment of silicone per voxel. Especially in the
sagittal slice, the separated silicone images had a significantly
higher resolution. The clinically used silicone-only images
exhibited higher signal in non-silicone regions (most notably in
fat-dominated regions, (S/S0)hmrGC-wfs > 3∗(S/S0)silicone-only)
and appeared more blurry compared to the silicone-separated
images.

In Fig. 11, the fitted R∗
2 maps used for PDSF and PDFF

calculation are shown. The R∗
2-fit was considerably improved

for 6 echoes compared to 4 echoes.
Figure 12 shows PDFF maps for 4 and 6 echoes and the

water-fat and water-fat-silicone model. For the comparison
of 4 and 6 echoes, quantification errors of up to 5% can

Fig. 9. In vivo water-fat-silicone separation results for a subject with
silicone implants. Water, fat and silicone images (a) and the field-map
(b) are shown for a sagittal slice for 4 and 6 echoes Water-fat suppresion
in the silicone image was quantified using the S/S0 ratio. The ROIs are
highlighted in red.

be estimated in the breast. Furthermore, PDFF quantification
was compared using the water-fat-silicone or water-fat signal
model for 4 echoes. The comparison showed concordant
results with small deviations of up to 1% per voxel. Outside
of the breast, higher quantification errors were estimated.

V. DISCUSSION

A framework for field-mapping in CSE-MRI was developed
in the present work. In particular, a novel algorithm was
introduced for the joint estimation of water, fat and silicone
images in in vivo breast CSE-MRI. Robustness and compet-
itive processing times were achieved by performing graph-
cuts using varying spatial resolutions. The hierarchical use of
signal models and the linkage of graph-cut layers assured a
high accuracy and SNR.

The proposed method enables improved water-fat suppres-
sion, less blurring and isotropic resolution compared to the
clinically used silicone-only scans employed in the routine
imaging protocol in our institution. The examination time may
be significantly reduced since only a single sequence is nec-
essary for obtaining water, fat and silicone images, especially
when PDFF quantification (e.g. quantifying breast density)
or quantitative susceptibility mapping (e.g. detecting breast
calcifications [45], [46]) are of interest. The proposed method
may be useful in detecting silicone implant’s ruptures. The
improved image quality may enable the detection of rare com-
plications, i.e. silicone-induced lymphadenopathy. Ruptures or
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Fig. 10. Clinically used silicone-only scan (double inversion recovery (DIR) acquisition) compared with water-fat-silicone separation based on
4 echoes (multi-echo gradient echo acquisition). Axial and sagittal slices are depicted for the silicone-only scan, the separated silicone images and
the separation-based proton density silicone-fraction (PDSF). Water-fat suppression in the silicone-only scans and the separated silicone images
was quantified using the S/S0 ratio. The ROIs are highlighted in red.

Fig. 11. R∗
2 maps for a subject with a silicone implant. Axial and sagittal

slices for 4 and 6 echoes are shown.

gel bleeding can lead to silicone leakage accumulating in
lymph nodes, which can be challenging to diagnose based on
conventional MR imaging due to overlying pulsation artifacts
of thoracic organs [47], [48].

The proposed use of different spatial resolutions decreases
processing times (< 5 min) and enables water-fat(-silicone)
separation with a reduced number of echoes even in the
presence of low SNR. It was shown that the proposed method
can reduce water-fat-silicone swaps for 4 echoes compared
to a single-resolution modified vlGC implementation (vlGC-
wfs method). Four echoes are the minimum number of echoes
needed for water-fat-silicone separation, but the noise perfor-
mance is reduced additionally due to non-optimal in vivo echo
times constrained by the in vivo voxel size. In the proposed

method, the solution for voxels with unreliable minima esti-
mation is estimated using the downsampled signal (Fig. 3).
Similar improvements were shown by other multi-resolution
water-fat separation methods [11]–[14]. However, other multi-
resolution methods did not yield an unwrapped field-map and,
although the field-map is first computed using a downsampled
signal, a non-smoothed field-map is estimated with the same
accuracy as for the vlGC method. In further studies, the
application of the algorithm for water-fat separation in other
anatomies could show its benefit to handle disjoint regions.
Graph-cut layers with a low spatial resolution may be used to
map a field-map estimate for signal voids based on the local
minima of neighboring voxels.

The hierarchical decomposition of the separation problem
consists of layered graph-cuts with different signal models,
sampling ranges and regularization. The first graph-cut layers
are computed with the water-fat signal model for higher
robustness and computational speed. The number of local
minima of the residual error is increasing with the number
of chemical species in the signal model (Fig. 2) and, thus,
the number of graph nodes is decreased if a water-fat model
instead of a water-fat-silicone model is applied. The worst-case
complexity of the applied Boykov-Kolmogorov algorithm is
increasing quadratically with the number of graph nodes [35].
For some geometries, if the fraction of signal voxels with
silicone is large (e.g., phantom measurements with only a
silicone implant), assuming a water-fat-silicone model in the
unwrapping layer might be more appropriate. Furthermore,
the use of different signal models per voxel is allowed in the
proposed method. The refinement of the field-map for voxels
without silicone, i.e. voxels with tissue, increases the accuracy
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Fig. 12. Proton density fat-fraction (PDFF) maps (a) for water-
fat-silicone separation (hmrGC-wfs) based on 4 or 6 echoes and
water-fat separation (hmrGC-wf) based on 4 echoes. The dataset
was cropped to only include the breast without implant for water-fat
separation. Difference PDFF maps (b) are shown for the number of
echoes (PDFFwfs,6 echoes − PDFFwfs,4 echoes), and the signal model
(PDFFwfs,4 echoes − PDFFwf,4 echoes).

of the method. Results for the hmrGC-wfs method showed
similar PDFF values compared to the hmrGC-wf method in a
breast without silicone implant.

Each of the graph-cut layers applies a modified vlGC algo-
rithm due to favorable properties: it converges to the global
minimum of the energy function [34] and the algorithm is able
to resolve large field-map variations [18]. The energy function
was modified for an additional data-consistency term weighted
by the inverse of a regularization parameter. However, further
optimization of the energy function might improve the perfor-
mance of the algorithm.

The presented method could be similarly applied for water-
fat-silicone imaging at 1.5 T. The graph-cut algorithm normal-
izes the field-map distance on the static magnetic field strength
and thus is independent of the field strength. The resonance

frequencies of fat and silicone are closer to the water resonance
frequency at 1.5 T but a similar performance compared to
3 T could be expected if longer and appropriate echo times
corresponding to the same phase differences for the chemical
species are applied. The experimental design can be simplified
for longer optimal echo times and a monopolar sequence could
be applied without time-interleaving.

The presented method was adjusted for three or more echoes
(four or more echoes for water-fat-silicone separation) but the
framework could be adapted for water-fat separation with only
two acquired echoes [49] or phase unwrapping. Additionally,
the framework might be useful for three chemical species
separation in the body other than water-fat-silicone separation,
i.e. 13C metabolic imaging [50].

Previous works have attempted to separate silicone from the
water-fat signal using CSE-MRI. Selective imaging of silicone
was proposed by separating all three species while setting the
center frequency on the silicone peak and assuming zero field-
map variations [51]. Furthermore, a 3D water-silicone separa-
tion combined with STIR for fat suppression was presented
allowing to increase the spatial resolution [4], but with the
known limitations of STIR in reducing SNR and lengthening
scan time [52]. Related works on the simultaneous separation
of water, fat and silicone [12], [21] were only performed in
a simplified phantom. Moreover, the approaches were limited
due to the needed initialization with a field-map [21] or the
direct phase estimation [12].

The present work has some limitations. First, although
computational time was significantly reduced, the graph-cut
algorithm itself is intrinsically not parallelizable without a
loss of accuracy [53]–[55]. Further optimization can exchange
some graph-cut layers with neural networks or optimize
the number of multi-resolution graph-cut layers. Second, the
method was only tested for a field strength of 3 T and
for sequences with constant echo spacing. Although the
multi-resolution framework can be easily adapted for non-
equidistant echoes, the hierarchical decomposition of the
water-fat-silicone separation relies on the periodicity of the
residual C( fB) for estimating sampling neighborhoods. Third,
the hierarchical multi-resolution framework was only applied
for breast MRI. However, fast and accurate field-mapping has
a larger field of application in the body (e.g. liver [56], [57],
spine [18], [20]). Fourth, the performance of the algorithm can
be limited by noise-dominated or corrupted regions where the
signal is unreliable. Although the optimization is improved
due to the multi-resolution approach, signal masking has a
high importance. The chosen threshold T was chosen to
perform separation automatically for all 10 subjects, but a
subject-specific threshold might be beneficial to minimize
swaps in the noise-dominated and motion-corrupted regions
at the edge of the FOV.

VI. CONCLUSION

A hierarchical multi-resolution graph-cut framework was
developed and proposed for water-fat and water-fat-silicone
separation. The proposed method enables in vivo simultaneous
water-fat-silicone separation and shows robust separation also
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for limited and noisy data. The presented algorithm also
enables PDFF quantification and field-mapping in subjects
with silicone implants with the same accuracy as for water-fat
separation. The derived silicone-separated images have the
ability to overcome limitations of clinically used silicone-only
scans in terms of water-fat suppression, image blurring and
spatial resolution.
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