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The sloping mire landscape of the investigation area, in the southern Andes of Ecuador, is dominated by stagnic soils with thick
organic layers. The recursive partitioning algorithm Random Forest was used to predict the spatial water stagnation pattern and
the thickness of the organic layer from terrain attributes. Terrain smoothing from 10 to 30 m raster resolution was applied in order
to obtain the best possible model. For the same purpose, several model tuning parameters were tested and a prepredictor selection
with the R-package Boruta was applied. Model versions were evaluated and compared by 100 repetitions of the calculation of the
residual mean square error of a five-fold cross-validation. Position specific density functions of the predicted soil parameters were
then used to display prediction uncertainty. Prepredictor selection and tuning of the Random Forest algorithm in some cases
resulted in an improved model performance. We therefore recommend testing prepredictor selection and tuning to make sure that
the best possible model is chosen. This needs particular emphasis in complex tropical mountain soil-landscapes which provide a
real challenge to any soil mapping approach but where Random Forest has proven to be successful due to the testing of model

tuning and prepredictor selection.

1. Introduction

Tropical forests store significant amounts of organic carbon
not only in their aboveground biomass but particularly in
their soils. In tropical mountain forests which receive a high
amount of precipitation, soil wetness is usually assumed to
even increase organic layer thickness and, therefore, soil car-
bon stocks due to a lower nutrient availability and turnover
rate [1, 2]. Furthermore, with the altitude decreasing tem-
peratures were often reported to cause an additional increase
of the thickness of the organic layer. Accordingly, Dieleman
et al. [3] claim that montane tropical forests consistently
contain larger amounts of soil organic carbon compared to
tropical lowland forests. We will show in this study that the
relation between climate and paludification (the formation
of peatlands) in tropical mountain landscapes is still not
completely understood and needs further investigation.

The soil landscape of the tropical mountain forest area
in San Francisco, Ecuador, is dominated by soils with hydro-
morphic properties and thick organic layers [4, 5]. The soils
are influenced by slope processes such as shallow slope
parallel subsurface flow within the organic layer and the
stagnic soil horizon [6, 7]. Rainfall and the geomorphology
of the landscape have a strong influence on the genesis of
stagnic soil properties [7] in determining how much water
is accumulated. The more water reaches a particular soil
compartment due to rainfall and shallow subsurface flow
and the lesser the discharge capacities of the soil are due to
its saturated hydraulic conductivity and its position in the
landscape, the more likely it is that stagnic properties will
develop. The term catena [8] refers to the relief determined
pattern of soils on hillslopes. It is defined as a sequence of soils
of about the same age derived from similar parent material
and occurring under similar climatic conditions but having



different characteristics due to variation in relief and drainage
[9].

Being an important control factor of soil formation and
water logging in particular, relief parameters calculated from
a digital terrain model (DTM) are often used to regionalise
soil properties. Walker et al. [10], Thompson et al. [11], and
Chaplot et al. [12] predicted hydromorphic soil properties
by landform parameters. Furthermore, the relation between
terrain parameters and soil drainage classes was analysed
by Troeh [13] and Peng et al. [14]. Soil horizon thickness
was regionalised by Moore et al. [15]. Moreover, Park et al.
[16] classified the soil morphological pattern based on soil
landscape units. For a detailed overview regarding digital
soil terrain modelling please refer to [17]. However, so far
only a few attempts have been made to apply digital soil
mapping techniques in tropical mountain landscapes, due
to their often high heterogeneity, difficult terrain, and low
accessibility. Moreover, rainfall induced soil slides are an
important factor within the development of this particular
soil landscape. Accordingly, first attempts to predict the histic
and stagnic soil layer [7] by classification and regression trees
(CART) [5] resulted in very high prediction uncertainty.

The recursive partitioning algorithm Random Forest is
known for its strong predictive force due to the prediction
by multiple decision trees and the implemented algorithms
to guarantee decision tree variability. However, for the ran-
dom selection of a subset of predictors to develop each
tree within Random Forest, each single tree is also more
prone to lose its predictive force while weak predictors are
included. This is a well-known problem concerning machine
learning algorithms [18]. Kursa and Rudnicki [19] provided
the R-package Boruta to select the minimal predictor set
and exclude predictors without predictive force to solve
this so-called minimal-optimal problem. Hence, different
predictor resolutions, Boruta pre selection of predictors,
and two tuning parameters to optimize the Random Forest
algorithm shall be tested in order to obtain the best possible
spatial prediction of three soil parameters: (1) the occurrence
probability of hydromorphic/stagnic properties in the soil, (2)
the vertical extent of these properties, that is, the thickness
of the stagnic soil layer, and (3) the thickness of the organic
layer. In order to refer to the former two, the term water
stagnation pattern will be used. Furthermore, we use the term
stagnic layer and not stagnic horizon to differentiate from its
usage within the World Reference Base of Soil resources [7],
where a stagnic soil horizon needs a clearly defined minimum
thickness.

2. Material and Methods

2.1. Dataset. The investigated soil-landscape comprises an
area of c. 26 km” around the research station San Francisco
(Figure 1). Soils were assessed by 56 soil profiles and 315
auger sampling points. To guarantee a representative dataset,
sampling sites were selected according to a 24-terrain classes
comprising sampling design [4]. While soil profiles, due
to limited time, had to be positioned close to the existing
footpath network, auger sampling took place along transects
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FIGURE 1: Sampling positions (adapted from [20]; overlaid hill
shading with light source from north).

laid from hilltops to valley bottoms (Figure 1). Transect posi-
tions also had to be selected due to accessibility of the often
very steep terrain.

2.2. Prediction Parameters. In earlier studies [4, 5] the terrain
parameters altitude, aspect, slope, terrain curvature, distance
to the channel network (OFD), and specific upslope con-
tributing catchment area, calculated by the kinematic routing
algorithm (KRAA), were used as prediction parameters for
organic layer and stagnic layer thickness [7].

According to Lief8 et al. [4, 21], Stagnosol [7] probability
increases above an altitude of about 2150 m a.s.l. on slope
angles <40°. Schrumpf et al. [22] also report an increase
in hydromorphic properties with altitude. The increase with
altitude can be attributed to the increasing rainfall [23]. Lesser
steep slope angles account for a slower discharge. Against
all expectations, rather small specific upslope contributing
catchment areas showed the highest Histosol [7] probability
[21].

Apart from parameters being related to rainfall inten-
sity like altitude or parameters describing relative water
accumulation such as slope, OFD, and KRAA more pre-
dictors describing water accumulation are added in this
study, that is, convergence index and Saga wetness index
(SWI). We further assume that the soil’s relative position on
the slope is of high importance not only due to received
rainfall and water accumulation potential but also regarding
wind and incoming solar radiation, which are expected to
have a stronger drying effect along the exposed mountain
ridges and on the eastern slopes that are exposed to the
main wind direction. To best describe these processes,
the terrain parameters valley depth, normalised height,
wind effect, terrain ruggedness index (TRI), and poten-
tial incoming solar radiation (PISR) were included as pre-
diction parameters. All considered terrain parameters were
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TABLE 1: SAGA modules to calculate terrain parameters.

Terrain parameter Module library Module Reference Saga author/year
. . . . Fill sinks .

Altitude Terrain analysis—preprocessing (Planchon/Darbou, 2001) [24] Wichmann/2003

Slope

Aspect Terrain analysis—morphometr Slope, aspect, curvature [25] Conrad/2001

Profile curvature Y Y ’ ’

Plan curvature

. . . Convergence index

Convergence index Terrain analysis—morphometry (search radius) [26] Conrad/2003

Normalised height . . Relative heights and .

Valley depth Terrain analysis—morphometry Slope positions — Bohner and Conrad/2008

TRI Terrain analysis—morphometry Terrain ruggedness index [27] Conrad/2010

Wind effect Terrain analysis—morphometr Wind effect — Bohner and Ringeler/2008,
4 p Y Conrad/2011

KRAA . . Catchment area

KRAS Terrain analysis—hydrology (flow tracing) [28] Conrad/2001

SWI Terrain analysis—hydrology Saga wetness index [29] Bohner and Conrad/2001

PISR Terrain analysis—lighting, visibility Potential incoming solar [30-32] Conrad/2010

radiation—direct insolation

calculated by SAGA modules according to Tablel [33-
35].

The predictor altitude, which corresponds to air tem-
perature [36] as well as a different forest composition and
structure [37], is assumed to strongly influence the organic
layer thickness due to a lower nutrient availability and
turnover rate [1, 2]. The relative position on the slope,
represented by valley depth and normalised height, is the
second important factor determining forest structure and
results in a denser more light consuming vegetation with
taller trees in the deep side valleys compared to the ridge
structures [37]. Furthermore, Oesker et al. [38] report a
different soil nutrient status for ridges and gorges within this
area.

We, therefore, expect the complex interactions of (1)
climatic factors such as rain and temperature represented
by altitude, (2) factors representing water accumulation and
discharge such as slope, KRAA, KRAS, SWI, and TRI,
and (3) factors influencing the drying mechanisms such
as wind effect, PISR, and relative slope position, repre-
sented by normalised height and valley depth to deter-
mine the spatial water stagnation pattern. The thickness
of the organic layer is assumed to be determined by (1)
the forest structure, (2) the soil nutrient status, (3) air
temperature represented by altitude, valley depth, and nor-
malised height, and (4) the soil water stagnation pat-
tern.

The influence of the predictor resolution, particularly of
the DTM, on digital soil mapping has been widely analysed
and has been summarized by Behrens et al. [39]. Lief} [40]
also assumed an effect of the DTM resolution on model
uncertainty for this particular research area. Therefore, this
study aims at finding the best possible Random Forest model
to predict the spatial water stagnation pattern and the organic
layer thickness within this tropical mountain landscape by
means of a range of predictor resolutions and various model

tuning parameters which include predictor selection and the
size of the predictor set for each Random Forest tree.

2.3. Random Forest Algorithm. Methods from the field of
statistical learning theory are often applied to understand the
influence of terrain parameters on soil properties and use this
relation to develop digital soil maps. Recursive partitioning
methods, that is, CART, boosted classification trees, and
Random Forest (RF) are used to predict soil units, clay
content, or soil drainage classes from terrain parameters (e.g.,
[41-43]). These tree methods are amongst the most popular
and widely used techniques for nonparametric regression and
classification [44].

Recursive partitioning [45] is a procedure by which a data
set, comprising one dependent (e.g., soil property) and many
predictor (e.g., terrain parameters) variables, is progressively
split into a dichotomously branching tree that optimizes
the homogeneity of samples within subsets based on the
dependent variable. At each splitting location within a tree,
it is possible to determine the value of the predictor variable
that best predicts the split in the data. For a regression
problem (e.g., organic layer thickness), the optimal split is
found by minimizing the mean square error. For a classifi-
cation problem (e.g., occurrence of stagnic properties), the
optimization criterion is the Gini Index [45].

RE developed by Breiman [46], is an ensemble method
which grows a number of classification or regression trees.
Model stability is achieved through tree diversity by (1)
choosing at random a subset of predictor variables (mtry)
to grow each tree and (2) sampling with replacement (boot-
strapping) and thereby varying the input dataset. The size
of mtry has to be selected by the user. It is a sensitive
parameter determining model strength for it defines the
strength of each individual tree and the correlation between
any two trees in the forest. Tree strength improves model
performance, whereas correlation among trees weakens it.



mtry can be optimized by the R-function tuneRE The tuning
parameter sampsize determines the size of the data subset
used for model development. It is set to 2/3 by default but
can be varied. Hence, Random Forest contains several tuning
parameters which control internal random processes.

RF was performed within the open-source data analysis
environment R (version 2.13.2; R Development Core Team,
2011). It is implemented with the package randomForest
which is based on Breiman and Cutler's FORTRAN code.
The R-package Boruta for predictor selection is described
by Rudnicki and Kursa [47]. Several tuning strategies were
applied and compared to the Random Forest model with
default parameters resulting in four model versions.

(1) No predictor selection and no tuning (R default values
for mtry and sampsize).

(2) Additional predictor selection with the R package
Boruta [19]. All confirmed and tentative predictors
were used. In case predictor selection with Boruta led
to better models compared to (1) it was also included
into (3) and (4).

(3) Additional tuning of sampsize. Sampsize was
tuned by fitting 12 models with different sampsizes
(5,10,15,20,...,60).

(4) Additional tuning of mtry instead of sampsize.

As analysed [5], not only CART methodology, but
also RF shows a strong dependence on the used dataset,
especially while the dataset is small. In order to compare
model performance and to estimate modelling uncertainty
of the 12 adapted models—three spatial predictor resolutions
times four model tuning strategies—a 5-fold cross-validation
scheme was computed and conducted in 100-fold repetition
to account for the effect of internal and external random
effects. Internal effects refer to the bootstrapping and predic-
tor selection procedure (mtry) implemented within Random
Forest; external effects refer to the sample attribution to cross-
validation groups. The so obtained RMSE distributions of the
12 models are then also compared to the RMSE distribution
of the mean of the data which was calculated by the same
scheme.

3. Results and Discussion

3.1. Preliminary Data Mining. Thick organic layers in the
tropics are assumed to develop above poorly drained basins
and depressions or in highland areas with a high precipita-
tion/evapotranspiration ratio [7]. However, Lief3 et al. [48]
state that the wettest points in highland landscapes might
be too wet to carry thick organic layers. It is often assumed
that soil water logging limits organic matter turnover [49, 50]
which results in the expectation of a positive correlation
between the occurrence of stagnic properties and organic
layer thickness. However, Figures 2(a) and 2(b) clearly show
that there is no correlation between the occurrence of stagnic
properties and the organic layer thickness for the investigated
area as was already assumed by Lief§ et al. [48].
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FIGURE 2: (a) Boxplots of organic layer thickness for soils with and
without stagnic properties based on collected data set. (b) Scatter
plot relating stagnic and organic layer thickness based on collected
data set.

3.2. Model Performance. Predictor selection with Boruta
(model version 2) resulted in no model improvement con-
cerning the prediction of the occurrence probability of stag-
nic properties (Figures 3(a)-3(c)) and organic layer thickness
(Figures 5(a)-5(c)) as indicated by the median RMSE. It
rather impaired model performance. For the prediction of
the thickness of the stagnic soil horizon it did, however, have
a positive impact for the models using 10 and 20 m terrain
resolution (Figures 4(a) and 4(b)).

The tuning of sampsize also had an ambivalent effect
on model performance (model version 3), for it improved
model performance for the models predicting the occur-
rence probability of stagnic properties, using 20 or 30m
terrain resolution, and even resulted in the best model
(Figures 3(b) and 3(c)). The same is true for the prediction of
the stagnic layer thickness, where it improved the models of
all three terrain resolutions (Figures 4(a)-4(c)) and resulted
in the overall best model for one of them (Figure 4(b)).
In the latter case of 20m terrain resolution being used
for the prediction of the stagnic layer thickness, all other
models (versions 1, 2, and 4) resulted in models worse
than the data mean. In predicting organic layer thickness,
the tuning of sampsize impaired model performance for 20
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FIGURE 3: Boxplots of the 100 RMSE of the models predicting the occurrence probability of stagnic properties. (a) 10 m terrain resolution, (b)
20 m terrain resolution, and (c) 30 m terrain resolution. 1 = default Random Forest parameters, 2 = additional predictor selection, 3 =1, 2+
tuning of sampsize, and 4 = 1, 2+ tuning of mtry. The lines refer to the boxplot parameters of the RMSE distribution of the mean of the data
as prediction model. Solid line: median, dashed line: upper/lower hinges, and dotted line: upper/lower whiskers.
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FIGURE 4: Boxplots of the 100 RMSE of the models predicting stagnic layer thickness. (a) 10 m terrain resolution, (b) 20 m terrain resolution,
and (c) 30 m terrain resolution. 1 = default Random Forest parameters, 2 = additional predictor selection, 3 = 1, 2+ tuning of sampsize, and 4
= 1, 2+ tuning of mtry. The lines refer to the boxplot parameters of the RMSE distribution of the mean of the data as prediction model. Solid
line: median, dashed line: upper/lower hinges, and dotted line: upper/lower whiskers.
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FIGURE 5: Boxplots of the 100 RMSE of the models predicting organic layer thickness. (a) 10 m terrain resolution, (b) 20 m terrain resolution,
and (c) 30 m terrain resolution. 1 = default Random Forest parameters, 2 = additional predictor selection, 3 =1, 2+ tuning of sampsize, and
4 =1, 2+ tuning of mtry. The lines refer to the boxplot parameters of the RMSE distribution of the mean of the data as prediction model. Solid
line: median, dashed line: upper/lower hinges, and dotted line: upper/lower whiskers.

and 30m terrain resolution, resulting in the models with  the prediction of the occurrence of stagnic properties and

the highest RMSE median (Figures 5(b) and 5(c)) but for the organic layer thickness. It did, however, always improve

10 m terrain resolution it resulted in the overall best model =~ model performance regarding the prediction of the thickness

(Figure 5(a)). The tuning of sampsize always resulted in the of the stagnic soil horizon (Figures 4(a)-4(c)).

lowest interquartile range of the RMSE distribution. Because of their lowest median of the RMSE distribution
The tuning of mtry (model version 4) had only lit-  the following models are considered best and will be used for

tle or no negative effect in model uncertainty concerning  prediction and map generation.
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FIGURE 6: Median occurrence probability of hydromorphic properties (a) and interquartile range (b) (overlaid hillshading from north).

(i) Occurrence probability of stagnic properties: 10 m
DTM, model 1 (no predictor selection, no tuning).

(i) Stagnic layer thickness: 10 m DTM, model 4 (predic-
tor selection, tuning of mtry).

(iii) Organic layer thickness: 20m DTM, model 4 (no
predictor selection, tuning of mtry).

Of these three models, a combination of tuning of mtry
and sampsize might have resulted in an even better model
only for the model to predict stagnic layer thickness. The
model to predict the occurrence probability of hydromorphic
properties reduced the Median RMSE by 18%, the model
to predict stagnic layer thickness reduced it by 3%, and
the model to predict organic layer thickness reduced it
by 11% compared to using the data mean for prediction.
That higher predictor resolution resulted in better models
to predict water stagnation was also reported by Chaplot
et al. [12]. According to Campling et al. [51], vegetation
indices and terrain parameters have a complementary role
in predicting soil drainage classes. Hence, classified satellite
image information could improve model performance and
will, therefore, be included in future modelling approaches.

3.3. Digital Soil Maps. The digital soil maps display the
soil parameters’ distribution function for every point in the
landscape. While the median (Figures 6(a), 7(a), and 8(a))
displays the spatial prediction estimate, the interquartile
range (Figures 6(b), 7(b), and 8(b)) provides a spatial uncer-
tainty estimate due to the data.

The digital soil map of the median occurrence probability
of stagnic properties and its interquartile range is shown in
Figures 6(a) and 6(b). The best of the 12 models predicted
by terrain parameters of 10 m resolution with no tuning and
no predictor selection was selected. For the development
of the digital soil map of the occurrence probability of

stagnic properties, all terrain parameters were included. This
indicates that it is the complex pattern of climate (altitude,
PISR), water accumulation (curvature, convergence, KRAA),
water discharge (slope, KRAS), the insulating effect of the
heterogeneous geomorphology with the ridge-side valley
structure in particular (TRI, normalised height, valley depth),
and the wind effect (wind effect, aspect) which lead to the
distribution pattern of stagnic soil properties within the
investigation area.

The spatial pattern of stagnic properties occurrence
probability in Figure 6(a) follows that described by Lief3 et al.
[48] with a minimum median probability of 0.2 throughout
the area and a particularly high probability between 2100
and 2500 m a.s.l. The lower probability below 2100 m a.s.L.
must be attributed to the higher inclination that supports
a higher discharge of surface and subsurface flow and the
higher bulk soil density [52]. In contrast, particularly the
flat platform-like areas above 2100 m show a much higher
probability. The lower probability above 2500 m a.s.] accord-
ing to Lief} et al. [48] can be attributed to a higher soil
hydraulic conductivity due to a sandier soil texture [5] and
therefore less chance for the development of stagnic soil
properties. A low interquartile range, <0.1 for 99% of the
area (Figure 9(a)), shows that the dataset is well suited to
model the spatial pattern of hydromorphic properties within
this area. However, particularly some parts along the upper
mountain ridges (Figure 6(b) south-eastern part) display a
rather high interquartile range. This shows that the model
is better suited for certain parts of the landscape. However,
another possible explanation is that the degree of soilscape
complexity for certain geomorphological positions might be
higher than for others.

The model to regionalise stagnic layer thickness is less
stable than the model to predict the horizon’s occurrence
probability. This is indicated by the rather high interquartile
ranges in Figure 7(b). Still 70% of the area displays a range
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FIGURE 8: Median organic layer thickness (a) and interquartile range (b) (overlaid hillshading from north).

<6.cm (Figure 9(b)). The vertical development of the soil
profile is less influenced by surface processes. According to
Park and Vlek [53], soil attributes whose vertical distribution
is strongly determined by vertical pedogenesis or unknown
factors are poorly modelled by environmental variables.
Therefore, terrain attributes can only explain horizon thick-
ness to some extent. Bauer [6] limited slope-parallel sub-
surface flow within the research area to the topsoil (stagnic
layer). The frequent change of parent material within one soil
profile [5] might be the reason why stagnic layer thickness
cannot be explained by geomorphology alone.

The chosen model version includes prepredictor selection
and the tuning of mtry so that we assume that at least some
of the predictors are not or are less suitable for predicting

the stagnic layer thickness. The thickest stagnic layers >40
or even >60 cm are found along the mountain ridges, with
decreasing thickness while proceeding down slope towards
the side valley creeks. In contrast to the occurrence prob-
ability of stagnic properties, this pattern seems to apply
throughout the area.

For the development of the digital soil map of the
organic layer thickness, all terrain parameters were included.
This means that the assumptions about the predictors were
reasonable. However, from the final model it is not clear
in which way the predictors influence the spatial pattern of
the organic layer thickness. The digital soil map is shown
in Figure 8. Its uncertainty expressed as the interquartile
range (Figure 8(b)) according to the dataset is very low;



Applied and Environmental Soil Science

100 — 100 — 100 —
= 80 < 80 = 80+
5 60 5 60— 5 60
2 E 2 B 2 E
;g 40 — Z; 40 - Lg 40 —
=] : :
O 20 O 20 O 20
0 T T T T T 0 T T T T T T 0 T T T T T T T
0 0.1 0.2 0 10 20 30 0 5 10 15

Interquartile range

()

Interquartile range

()

Interquartile range

(c)

FIGURE 9: Covered cumulative area percentage in dependence of the interquartile range. (a) Occurrence probability of stagnic properties, (b)

stagnic layer thickness, and (c) organic layer thickness.

that is, different data subsets predict a similar organic layer
thickness. 97% of the area displays an interquartile range
<5 cm (Figure 9(c)). This indicates a stable model.

The thickest organic layers are not found along the
mountain ridges which are supposed to be the wettest due
to their exposedness and low slope angle, resulting in the
highest stagnic layer thickness (and probability). The organic
layer thickness rather seems to be the highest on mid slope
positions, decreasing towards the creeks and towards the
crests. Water logging surely limits organic layer decomposi-
tion, but is not the only cause. A higher direct solar radiation
and wind exposure might favour decomposition rates along
the exposed and mostly flat mountain ridges. In addition,
wind might also be responsible for a lower litter fall rate on
these sites. Accordingly, apart from prediction parameters
indicating rainfall (altitude) soil water accumulation (plan
curvature, KRAA, SWI, TRI) and water discharge (slope),
solar radiation (PISR) and wind effect are also important. Last
but not least, the relative slope position (normalised height,
valley depth) is a good indicator for organic layer thickness.

With the overall median organic layer thickness >21cm
and 46 area % even >40 cm, the area is influenced by paludifi-
cation, controlled by factors such as climate, geomorphology,
and soil water stagnation. International mire classification
[54] acknowledges soligenous surface flow mires, the so-
called sloopy fens. German Bavarian classification [55] is
more precise in acknowledging the fact that sloping mires
are influenced by rainwater and shallow subsurface flow at
the same time and refers to them as soliombrogen sloping
mires. However, information on tropical mountain mires is
still scarce. Chimner and Karlberg [56] state that tropical
mountain peatlands unlike lowland peatlands are covered
by cushion plants, bryophytes, and herbaceous. We can now
report that the mires within the tropical Andes of southern
Ecuador are also found within the tropical mountain forest
zone at 1800-2800m a.s.l. and under paramo vegetation
starting above c. 2800 m a.s.L.

Furthermore, organic layer thickness does not increase
with altitude as was concluded by studies based on a dataset
with a smaller spatial coverage [13, 47] and is usually
explained by a decrease in organic matter turnover and

limitation in nutrient supply due to decreasing mean temper-
atures and increasing rainfall [1, 20, 57].

The landslides occurring with high frequency within
the investigation area might give one possible explanation.
However, old landslide positions, covered again by dense
forest, were sampled by chance and make up less than 5%
of the data. Furthermore, open landslide scars, which are
visible on aerial photographs, are mainly found at upper slope
positions and on steep slopes and therefore cannot explain
the low organic layer thickness along the ridges which are left
unaffected.

4. Conclusions

Soliombrogen sloping mires do not only occur in tropical
paramo landscapes, but also under tropical mountain forest
vegetation. However, there is no simple relation between
the water stagnation pattern and organic layer thickness,
but a complex interaction of various parameters has to be
considered. Furthermore, soil organic layer thickness within
this tropical mountain landscape does not increase along
the altitudinal gradient as was assumed by authors analysing
datasets of a smaller spatial coverage.

The Random Forest algorithm was successfully applied to
predict the spatial distribution of the occurrence probability
of stagnic properties and of the organic layer thickness in this
complex tropical landscape that is influenced by landslides.
The RMSE as compared to the mean was reduced by 18% by
the model to predict the former and 11% by the model to
predict the latter. Still stagnic layer thickness was the most
difficult parameter to be predicted, as indicated by the low
improvement in RMSE by only 3% as was also described by
Lief3 et al. [48].

Our modeling exercise has shown that position specific
density functions of soil properties, characterized by median
and interquartile range (Figures 6, 7, and 8), may be an
appropriate way of mapping prediction uncertainty. They
show that a particular model is better suited for certain parts
of the landscape. Furthermore, they might indicate that the
degree of soilscape complexity for certain geomorphological
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positions might be higher than for others, which needs to be
further investigated in the near future.

All considered terrain parameters proved to be impor-
tant predictors for the spatial water stagnation pattern
and the paludification process in this particular landscape
and should, therefore, be considered while investigating
other tropical mountain landscapes, and—in case they are
available—amended by others. As expected, DTM resolution
also showed an impact on model performance. Higher
resolution was favoured for the prediction of hydromorphic
properties, while using a smoothened DTM lead to better
results concerning the organic layer thickness models. Trop-
ical soils may vary in their hydromorphic properties within
a few meters. Nevertheless, it would have been interesting to
extend the range of the GIS raster resolutions beyond 30 m.
However, with the available dataset this was not possible. As
the spatial distance between many data points is not more
than 25 meters, a further terrain smoothing would have only
yielded in a higher noise and model uncertainty.

However, no general decision should be made in regard to
whether Random Forest tuning is necessary or not. Prepre-
dictor selection with Boruta improved model performance
in one of the three predicted soil parameters. The tuning
of mtry resulted twice in the overall best model. Sampsize
reduced model variation as indicated by the RMSE range and
improved model performance in some cases. We, therefore,
recommend always testing prepredictor selection and model
tuning in order to make sure that the best possible model is
chosen. This needs particular emphasis in complex tropical
mountain soil landscapes which provide a real challenge to
any soil mapping approach but where a supervised learning
technique has proven to be successful due to the testing of
model tuning and prepredictor selection.
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