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Introduction
Graft versus host disease (GvHD), caused by alloreactive donor T cells, is a major factor that limits the 
success of  allogeneic hematopoietic cell transplantation (alloHSCT) (1). An estimated 40%–60% of  
alloHSCT recipients are affected by GvHD (2, 3). Currently, the diagnosis of  acute GvHD (aGvHD) is 
mainly based on clinical symptoms pertaining to 1 or more target organ systems (4, 5). Glucocorticoids 
and immunosuppressive agents are used as the first-line treatment for GvHD. However, generalized immu-
nosuppression is liable to lead to opportunistic infections. Therefore, there has been an increased interest 
in identifying biomarkers of  aGvHD and understanding the pathogenesis of  aGvHD so as to guide treat-
ment decision-making and direct more intensive clinical surveillance of  high-risk patients (6–14).

Extensive research has been dedicated to identifying blood biomarkers for aGvHD to improve diagno-
sis and facilitate personalized treatment. Biomarkers for aGvHD have been studied thoroughly at the facets 
of  cytokines (15–17), immune cells (18–21), single nucleotide polymorphisms (22), miRNAs (23–27), and 
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chemokines (12, 28–31). However, no single biomarker predicts outcomes across different transplant prac-
tices or patient characteristics. Up to now, the best combination was ST2 and REG3α. Studies have shown 
that ST2 and REG3α levels at the initiation of  GvHD therapy and during the first month after transplanta-
tion may help improve risk stratification for treatment-resistant GvHD (11, 12, 30). An increasing body of  
evidence suggests a strong connection between aGvHD and metabolism (32, 33). Cell metabolism deter-
mines the fate and function of  T cells, which play a key role in the pathogenesis of  aGvHD. Metabolomics 
is an important component of  system biology that allows us to measure metabolic alterations that reflect 
the genetic, epigenetic, and environmental determinants of  cellular physiology (34, 35). The stearic acid/
palmitic acid (SA/PA) ratio detected on day 7 after HSCT was shown to be a useful biomarker of  aGvHD 
and relapse (36). However, the influence of  gene changes on metabolism and the gene-metabolite networks 
involved in aGvHD are not well characterized. Integration of  metabolomics and transcriptomics may yield 
further insights into the pathogenesis of  aGvHD. Indeed, it may help uncover the complex regulatory net-
works involving genes and metabolic pathways in aGvHD than either approach alone.

In the present study, we performed global metabolic analysis in alloHSCT recipients with or without 
aGvHD to identify critical metabolites that may help predict aGvHD. We performed transcriptomic pro-
filing in a cohort of  patients (training set) to identify significantly altered genes between patients with and 
without aGvHD. Integrative analysis of  metabolomics and transcriptomic data revealed that glycerophos-
pholipid (GPL) metabolism may play an important role in the pathogenesis of  aGvHD. These relevant 
metabolic and transcriptomic alterations were further verified in a separate cohort of  patients (validation 
set). Subsequently, we combined the metabolic and transcriptomic data to identify significantly disturbed 
pathways at both the metabolic and transcriptional levels. Lastly, we developed a model including 5 highly 
connected GPL metabolites to predict the probability of  aGvHD.

Results
Metabolic alterations in aGvHD patients. The overall study design is shown in Figure 1, and the clinical 
characteristics of  patients are summarized in Table 1. There were no significant differences with respect 
to age, sex, diagnosis, disease status, conditioning regimen, or type of  transplantation between the 2 
sample sets or between patients with and without aGvHD in each set. To explore the metabolic profile 
of  aGvHD, we used a metabolomic approach based on liquid chromatography−mass spectrometry 
(LC-MS) to identify differentially expressed metabolites in the aGvHD and control groups (without 
aGvHD) in the training set. The metabolomic profile of  the aGvHD group at +15 days after transplan-
tation was distinctly different from that of  the control group, as evidenced by robust orthogonal partial 

Figure 1. Experimental flow chart.
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least squares discriminant analysis (OPLS-DA) models established in the training (R2Xcum = 0.523; 
R2Ycum = 0.745; and Q2

cum = 0.634) and validation sets (R2Xcum = 0.519; R2Ycum = 0.684; and Q2
cum = 

0.576). The scores plot demonstrated a clear separation between cases with and without aGvHD, and 
no overfitting of  the OPLS-DA models were found (Supplemental Figure 1; supplemental material 
available online with this article; https://doi.org/10.1172/jci.insight.129494DS1).

Based on the criteria of  variables important to projection (VIP) value > 1 and P < 0.05 (2-tailed Student’s 
t test), 38 metabolites were identified as potential biomarkers (Supplemental Table 1). These metabolites 
pertained to GPL metabolism, fatty acid metabolism, amino acid metabolism, citrate cycle, sphingolipid 
metabolism, purine metabolism, and bile acid metabolism.

Table 1. Characteristics of patients

Variable Training set Validation set
With aGvHD Without aGvHD P With aGvHD Without aGvHD P PA

Number of patients 27 30 24 26
Age at transplant, years 32 (20, 60 yrs) 36.5 (19, 58 yrs) 0.962 35.5 (17, 62 yrs) 39.5 (18, 66 yrs) 0.561 0.738
Sex, n (%)
  Male 11 (40.74) 19 (63.33) 0.088 14 (58.33) 16 (61.54) 0.817 0.210
  Female 16 (59.26) 11 (36.67) 10 (41.67) 10 (38.46)
Diagnosis, n (%) 0.319 0.690 0.746
  AML 11 (40.74) 18 (60.00) 12 (50.00) 16 (61.54)
  ALL 10 (37.04) 10 (33.34) 9 (37.50) 7 (26.92)
  MDS 4 (14.81) 1 (3.33) 3 (12.50) 3 (11.54)
  CML 2 (7.41) 1 (3.33) 0 (0) 0 (0)
Disease status, n (%) 0.872 0.626
  CR1 23 (85.19) 25 (83.33) 18(75.00) 18 (69.23) 0.631
  CR2 1 (3.70) 3 (10.00) 1 (4.17) 3 (11.54)
  No remission 3 (11.11) 2 (6.67) 5 (20.83) 5 (19.23)
Donor type, n (%)
  HLA-matched related 13 (48.15) 16 (53.33) 0.696 15 (62.50) 19 (73.08) 0.423 0.304
  HLA-matched unrelated 14 (51.85) 14 (46.67) 9 (37.50) 7 (26.92)
Donor age (years) 37 (15, 59 yrs) 33.5 (12, 54 yrs) 0.208 35 (16, 59 yrs) 35 (9, 55 yrs) 0.437 0.309
Donor sex, n (%)
  Male 18 (66.67) 23 (76.67) 0.402 17 (70.83) 17 (65.38) 0.680 0.749
  Female 9 (33.33) 7 (23.33) 7 (29.17) 9 (34.62)
Donor ABO, n (%)  
  Matched 14 (51.85) 15 (50.00) 0.889 12 (50.00) 7 (26.92) 0.093 0.895
  Mismatched 13 (48.15) 15 (50.00) 12 (50.00) 19 (73.08)
Conditioning regimen, n (%) 0.506 1.000 0.329
  MAC 21 (77.78) 21 (70.00) 22 (91.67) 23 (88.46)
  RIC 6 (22.22) 9 (30.00) 2(8.33) 3 (11.54)
Transplanted cells
  CD34+, 1 × 106/Kg 3.15 (0.79, 11.00) 3.12 (1.23, 10.94) 0.879 4.69 (1.46, 10.60) 4.99 (1.34, 10.07) 0.888 0.167
  MNC, 1 × 108/Kg 6.16 (1.74, 10.32) 6.69 (2.14, 10.74) 0.208 4.99 (1.12, 13.76) 6.04 (1.81, 8.14) 0.411 0.119
Hematopoiesis reconstruction (days) 
  neutrophils 13 (10, 18 d) 12 (10, 17 d) 0.108 12 (10, 18 d) 12 (9, 16 d) 0.366 0.447
  platelets 14 (11, 49 d) 13 (10, 17 d) 0.053 13 (9, 26 d) 13 (9, 19 d) 0.117 0.452
aGVHD
Time (days after transplant) 31 (22, 90 d) NA 29 (19, 72 d) 0.769
Grade, n (%)
  I–II° 10 (37.04) 8 (33.33) 0.782
  III–IV° 17 (62.96) 16 (66.67)

aGvHD, acute graft versus host disease; AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; MDS, myelodysplastic syndrome; CML, chronic 
myeloid leukemia; CR1, the first complete remission; CR2, the second complete remission; HLA, human leukemia antigen; MNC, mononuclear cells; 
alloHSCT, allogeneic hematopoietic stem cell transplantation; RIC, reduced intensity conditioning; MAC, myeloablative conditioning. PA means patients 
with GVHD in training set vs. in validation set.
 

https://doi.org/10.1172/jci.insight.129494
https://insight.jci.org/articles/view/129494#sd
https://doi.org/10.1172/jci.insight.129494DS1
https://insight.jci.org/articles/view/129494#sd


4insight.jci.org      https://doi.org/10.1172/jci.insight.129494

C L I N I C A L  M E D I C I N E

Integration of  metabolomics and transcriptomics revealed altered GPL metabolism pathway during pathogen-
esis of  aGvHD. To discover the essential metabolites, data pertaining to 38 potential biomarkers in the 
training and validation sets were used to build correlation networks (Figure 2A). Five highly connected 
metabolites (lysophosphatidylcholine [LysoPC] [18:1], C16:0 PAF, LysoPC [P-16:0], LysoPC [18:2], and 
LysoPC [22:6]) with the brightest colors appeared in the center of  the networks in both sets. Interesting-
ly, these metabolites were all GPLs, which indicated that GPL metabolism may be notably changed in 
aGvHD. Figure 2B illustrates the altered pathways based on metabolic profiling data. We identified GPL 
metabolism as the top hit because of  its lower P value and greater pathway impact; this suggested that 
GPL metabolism is one of  the most significant pathways.

To trace the upstream variations of  metabolome, we conducted transcriptional profiling of  the same 
specimens. Of  the 57,773 genes profiled, 1,148 were significantly altered in patients with aGvHD (t test, 
FDR corrected P < 0.05, |fold change| > 1.5). Figure 2C shows the top 30 significant pathways based on 
transcriptomic pathway analysis. After metabolic pathway analysis and transcriptomic pathway analysis, 
we found 2 differentially expressed pathways at both the metabolomic and mRNA expression levels in 

Figure 2. Integration of metabolomics and transcriptomics identified a unique set of GPL metabolism pathways in aGvHD. (A) Correlation analysis using profil-
ing data from 38 metabolites in the training (n = 57) and validation sets (n = 50). (B) Overview of the pathway analysis based on metabolites alteration in +15 day 
samples after transplantation. (C) Pathway enrichment analysis of transcriptomic profiles associated with aGvHD.
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patients with aGvHD: GPL metabolism and inositol phosphate metabolism (Figure 2). Furthermore, tran-
scriptomic pathway analysis (Figure 2C) showed that the GPL metabolism pathway was one of  the most 
significant pathways with Bonferroni correction P value (Q value) < 0.001; this indicated that it is a critical 
pathway related to the development of  aGvHD. We identified 13 significantly altered genes associated with 
GPL metabolism. Moreover, gene-related pathways known to play a key role in aGvHD physiopathogen-
esis were also differentially expressed between patients with and without aGvHD; these included Th1 and 
Th2 differentiation, Th17 differentiation, and MAPK signaling pathways.

Glycerophospholipolytic metabolites and enzymes were significantly altered during aGvHD. Next, we investigated 
the significant metabolic alterations in GPL metabolism. Compared with patients without aGvHD, the fol-
lowing 17 metabolites involved in the GPL metabolism were identified in this study: LysoPC (16:0), LysoPC 
(20:3), LysoPC (17:0), LysoPC (18:2), LysoPC (22:6), LysoPC (18:1), LysoPC (P-16:0), LysoPE (0:0/20:1), 
LysoPE (0:0/22:4), PC (16:0/22:6), PC (13:0/0:0), PC (14:0/18:1), PC (15:0/20:5), Phosphatidylethanol-
amine (PE) (20:4/20:3), PE (16:0/18:2), Diacylglycerol (21:0/22:4/0:0) (DG [21:0/22:4/0:0]), and plate-
let activating factor C16:0 (C16:0 PAF) (Supplemental Table 1). All of  these were differently expressed in 
aGvHD plasma in both the training and validation sets (P < 0.05). Compared with patients without aGvHD, 
those with aGvHD exhibited significant accumulation of  PCs and PEs, along with reduction of  LysoPCs, 
LysoPEs, DG, and C16:0 PAF. Of note, the levels of  metabolites were completely or partially restored to 
normal levels with the remission of  aGvHD in both the training and validation sets (Supplemental Table 2).

We further explored the gene expressions of  these lipases involved in GPL metabolism, which includ-
ed GPL lipase surrogate genes lecithin-cholesterol acyltransferase (LCAT, cholesterol esterifying enzyme), 
lysophosphatidylcholine acyltransferase 1 (LPCAT1, LysoPC acyltransferase 1), LPCAT4 (LysoPC acyl-
transferase 4), HRAS-like suppressor 3 (PLA2G16, phospholipase), PLCG1 (phosphor lipase C), phosphati-
date phosphatase LPIN 1 (LPIN1, phosphatidic acid phosphohydrolase enzyme), DGKE (DG kinase), and 
CHKA (choline kinase) (Figure 3). The fluctuations in the relative signal intensities were in accordance with 
the aGvHD severity in both the training and validation sets (Figure 3, B and C). The relative gene expres-
sions of  these lipases in patients with and without aGvHD were also visualized using a heatmap (Figure 
3A). As shown in Figure 4A, we observed a consistent trend in gene expressions of  these lipases and the 
related GPLs. Downregulation of  lysoPCs, PAF, and DG were associated with downregulation of  LCAT, 
PLA2G16, PLCG1, and LPIN1; in addition, upregulation of  PCs and PEs were associated with upregulation 
of  LPAT1 and LPCAT4.

Development of  a predictive model of  GPL metabolite biomarkers and its association with aGvHD. An ideal 
biomarker should be detectable before the onset of  aGvHD. We analyzed the metabolites in plasma 
samples collected from aGvHD patients before the onset of  aGvHD (median 15 days [range: 4–75] 
before aGvHD diagnosis). A distinct GPL metabolism signature was uncovered in aGvHD plasma, as 
evidenced by significant alteration of  17 of  38 identified plasma metabolites and their corresponding 
lipases in this pathway. We hypothesized that dysregulated GPL metabolism is an early event in the acti-
vation of  alloreactive T cells during aGvHD pathogenesis. We further used least absolute shrinkage and 
selection operator (LASSO) logistic regression model to build aGvHD risk score (GRS) in the training 
set and identified 5 metabolites from the 17 GPL metabolites (Figure 5 and Supplemental Figure 2). 
We evaluated the predictive value of  these 5 metabolites for the development of  aGvHD (Supplemental 
Figure 3, A and B). Hierarchical clustering analysis revealed significantly altered metabolite concentra-
tions (Figure 5A). Subsequently, we calculated GRS for each patient based on their individual expres-
sion levels of  the 5 metabolites, where GRS = 2.2974 × v1 + 20.8171 × v2 – 102.8055 × v3 – 0.0939 × 
v4 – 1.1977 × v5 (Supplemental Table 3). The receiver operating characteristic (ROC) curves based on 
the GRS yielded satisfactory results in the training and validation sets, respectively (Figure 5B). The 
metabolism signature had an AUC value of  0.922 (95% CI, 0.849–0.996) in the training set and 0.896 

Figure 3. Gene expression of glycerophospholipolytic enzymes in 2 independent sets. (A–C) Heatmap showing the changes in the expression of genes 
involved in GPL metabolism of aGvHD and control (without aGvHD) groups. Shades of red and green represent high or low expression (see color scale) 
(A). Each column represents a patient with aGvHD or without aGvHD. LCAT, LPCAT1, LPCAT4, PLA2G16, PLCG1, LPIN1, DGKE, and CHKA are differentially 
expressed in aGvHD as compared with control in training (B) and validation sets (C). In the training set, n = 13 for aGvHD and aGvHDΔ samples, n = 12 for with-
out aGvHD samples. In validation set, n = 12 for aGvHD, aGvHDΔ, and without aGvHD samples. The comparisons were made between control vs. aGvHD and 
between aGvHDΔ vs. aGvHD. Box plots represent gene expression level with relative intensity (log2) of microarray data in the training set or relative Ct value 
normalized with endogenous control gene U6 using qPCR data in validation set. Bars indicate median value. P value refers to 1-way ANOVA. *P < 0.05, **P < 
0.01. aGvHDΔ, aGvHD in remission after medication.
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(95% CI, 0.811–0.981) in the validation set. The optimal cut-off  point of  GRS in training set (–4.74) 
was associated with sensitivity of  88.9% and specificity of  86.7%. Using this cut-off  point, patients 
were divided into high and low GRS groups. Patients with high GRS had OR of  32.8 for aGvHD com-
pared with low GRS. The 5-biomarker model successfully identified HLA-matched related or unrelated 
alloHSCT recipients with a high risk for aGvHD (83.02% in the high-risk group and 12.96% in the low-
risk group) (P < 0.0001). The algorithm performed equally well in the training set (85.71% vs. 10.34%, P 
< 0.0001) and the validation set (80.00% vs. 16.00%, P = 0.00002). There were no significant differences 
between these 2 groups with respect to clinical characteristics (Supplemental Table 4).

Further, we observed that the levels of  38 metabolites were largely restored to normal with ameliora-
tion of  aGvHD clinical scores in both the training and validation sets (Supplemental Table 2 and Figure 
5C). In particular, the levels of  C16:0 PAF, LysoPC (22:6), PC (13:0/0:0), and LysoPE (0:0/22:4) in the 
panel were completely restored to normal after aGvHD remission. The other metabolites were also restored 
to varying degrees in both sets.

Subsequently, we investigated whether the metabolites exhibit aGvHD target organ specificity. Lys-
oPE (0:0/22:4) and PC (13:0/0:0) showed a positive correlation with liver and skin, respectively. PC 
(13:0/0:0) showed a negative correlation with gastrointestinal aGvHD (Supplemental Figure 3, C–E).

Figure 4. Schematic overview of the metabolites and major metabolic pathways, as well as pathway-related 
enzyme surrogates iterations, in aGvHD patients at day +15 after alloHSCT. (A) Description of the glycerophos-
pholipid metabolism pathway related metabolites and enzyme surrogate genes changes in aGvHD. (B) Dysregu-
lation of metabolic pathways in aGvHD. The enzyme surrogates are shown in color: red text represents increased 
expression of enzyme surrogates, and blue text represents decreased expression of enzyme surrogates. The 
yellow circles represent no detected metabolites; green circles represent decreased metabolites; and red circles 
represent increased metabolites.
 

https://doi.org/10.1172/jci.insight.129494
https://insight.jci.org/articles/view/129494#sd
https://insight.jci.org/articles/view/129494#sd
https://insight.jci.org/articles/view/129494#sd


8insight.jci.org      https://doi.org/10.1172/jci.insight.129494

C L I N I C A L  M E D I C I N E

To develop a clinically applicable method that could help predict an individual’s risk of  aGvHD, we 
developed a nomogram based on the panel of  these 5 metabolites of  all patients in the 2 sets (Figure 6A). 
Calibration plots of  the nomograms for predicting the probability of  aGvHD showed that the nomo-
grams did well as compared with an ideal model. The results indicated the reliability of  the model based 
on GRS (Figure 6B).

Lastly, we assessed whether the GRS can be used as a prognostic tool in alloHSCT. One hundred 
seven alloHSCT recipients were divided into high GRS and low GRS groups. Kaplan-Meier survival 
analysis suggested that patients in the high GRS group had significantly poorer OS as compared with 
those in the low GRS group (P = 0.0106, Supplemental Figure 4). On multivariate Cox regression analy-
sis with GRS and clinical characteristics, GRS was an independent unfavorable prognostic factor for OS 
(P = 0.014, hazard ratio = 2.696; Supplemental Table 5).

Figure 5. Five metabolites exhibited a strong correlation with the development and severity of aGvHD. (A) The heatmap of 5 metabolites (C16:0 
PAF, LysoPC [22:6], PE [20:4/20:3], PC [13:0/0:0], LysoPE [0:0/22:4]) selected from 17 GPL metabolites. (B) ROC curve analysis of the ability of 
plasma metabolites, including C16:0 PAF, LysoPC (22:6), PE (20:4/20:3), PC (13:0/0:0), and LysoPE (0:0/22:4), to predict the development of aGvHD 
based on both the training (n = 57) and validation sets (n = 50). The area under the ROC curve was 0.922 (95% CI, 0.849–0.966) in the training set, 
and 0.896 (95% CI, 0.811–0.981) in the validation set. (C) Box plots showing fluctuations in relative signal intensities of 5 metabolites. Five metabo-
lites within the panel were restored to normal levels at varying degrees after aGvHD in remission after medication. The comparisons were made 
between control vs. aGvHD, and aGvHDΔ vs. aGvHD, respectively. Bars indicate median value. P value refers to 1-way ANOVA. *P < 0.05, **P < 0.01. 
aGvHDΔ, aGvHD in remission after medication.
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Discussion
In this study, we employed metabolic analysis, along with transcriptome analysis, to identify critical bio-
markers that distinguish alloHSCT recipients with aGvHD from alloHSCT recipients without aGvHD in 2 
separate cohorts. Pathway analysis of  38 significantly altered metabolites and 1,148 differentially expressed 
gene surrogates revealed distinctly altered GPL metabolism. Subsequently, we developed a GRS based 
on 5 highly connected GPLs to diagnose aGvHD (AUC 0.922 in training set and 0.896 in validation set). 
In addition, high GRS was correlated with poor overall survival (OS). Moreover, GPL enzyme surrogate 
genes also exhibited an ability to predict the development of  aGvHD (Supplemental Table 6). Collectively, 
our data suggest that the plasma GPL signature is an independent predictive factor for aGvHD. GRS on 
day 15 after alloHSCT may facilitate risk stratification of  HLA-matched alloHSCT recipients for aGvHD.

Recent studies in the aGvHD model revealed that alloreactive T cells may employ fatty acid or 
glucose to fuel their activation (32, 33), which might be related to the altered GPL metabolism observed 
in our results. Lipids, such as GLPs, cholesterol, and glycolipids, are the most abundant molecular com-
ponents of  cell membranes. With the increased need of  membrane building blocks, pathogenic T cells 
were shown to depend on de novo fatty acid synthesis and the underlying glycolytic-lipogenic metabolic 
pathway for their development (37, 38). Consistent with these findings, we observed increased GPL 
and fatty acid metabolism at +15 days after alloHSCT in aGvHD patients prior to the onset of  clinical 
symptoms (Figure 4B), which indicated the proliferation of  alloreactive T cells. Once activation, T 
cells need to transit from quiescence to fast expansion. In the meantime, lipid metabolism of  T cells 
switched from energy generation through fatty acid oxidation to fatty acid biosynthesis for membranes 
and signaling molecules (38–40). A previous study also reported that GPL metabolism and fatty acid 
metabolism were accelerated in response to the need for rapid proliferation of  T cells (39), which is 
in accordance with our results. During activation of  T cells, beta-oxidation of  fatty acids is decreased 
while other metabolic pathways increase. As shown in Supplemental Table 1, free fatty acids (the ingre-
dient for synthesis of  GPLs) were reduced in aGvHD plasma, which indicated increased consumption 
of  fatty acids for GPL synthesis by activated cells. Interestingly, it was reported that lipid metabolism 
reversed to resting state conditions and proliferation of  T cells was inhibited immediately after remov-
ing the stimulus in proliferating T cells (41), which demonstrated that lipid metabolism was closely 
related to T cell proliferation. Our results show that the acute graft versus host reaction is already in 
progress by day 15 and that the increased biomarker levels may precede clinical symptoms by days or 
weeks. The median day for aGvHD onset was 31 days in the training set and 29 days in the validation 
set (Table 1). The fluctuations in relative signal intensities were in accordance with the alterations of  
metabolites. Because of  the scarcity of  T cells in peripheral blood or BM on +15 days after transplanta-
tion, we were unable to conduct a metabolomic analysis for T cells in this study.

Figure 6. Nomogram based on training set for predicting risk/probability of aGvHD. (A) Nomogram based on training set (n = 57) for predicting the risk/
probability of aGvHD. (B) The calibration plot comparing predicted outcomes with actual outcome. Dashed line is the 45° reference line, indicating an ideal 
nomogram. The dotted line is the apparent accuracy of the nomogram without correcting for overfit. The solid line is the bootstrap-corrected performance 
of the nomogram with a scatter estimate for future accuracy. Calibration plots showed that the nomograms did well compared with an ideal model.
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Active proliferation of  T cells entails synthesis of  several cellular constituents such as membranes. As a 
major structural lipid component of  cellular membranes, enhanced GPL biosynthesis in activated T cells has 
been reported in the setting of  inflammatory and autoimmune diseases (42, 43); these findings are consistent 
with our data (Figure 4 and Supplemental Table 1). Increased plasma levels of  PEs and PCs in aGvHD 
plasma were observed in patients with aGvHD (Figure 4B), which may suggest increased proliferative activ-
ity in alloreactive T cells. LysoPCs and LysoPEs are intermediates in the biosynthesis pathway of  PCs and 
PEs. Reduced LysoPCs and LysoPEs and increased activity of  lipases LPCAT1 and LPCAT4 in aGvHD 
plasma suggested increased synthesis of  PC and PE (Figure 4). Downregulated expressions of  lipases LCAT, 
PLA2G16, PLCG1, and LPIN1 eventually led to reduced levels of  LysoPCs, LysoPEs, PAF, and DG. Over-
all, GPL levels showed a positive association with gene expressions of  these lipases in plasma samples of  
patients with aGvHD, which suggested that dysregulation of  the GPL network appeared in the very early 
stage of  aGvHD (Figure 4). These alterations of  GPL metabolism directly reflect the host histocompatibility 
antigens to which donor T cells respond within days of  graft infusion and were significant predictors of  
aGvHD in univariate and multivariate analysis.

In summary, based on metabolic and transcriptomic investigation combined with pathway analysis of  
differentially expressed metabolites and genes, we discovered distinctive altered GPL metabolism in the early 
stage of aGvHD pathogenesis. Gene expressions of GPL-related lipases were significantly altered in aGvHD 
samples, leading to dysregulated GPLs. The GRS generated from 5 GPL metabolites had the ability to predict 
the development of aGvHD with an AUC of 0.922 in the training set and 0.896 in the validation set. In addi-
tion, our data suggest that high GRS on day 15 after alloHSCT was a unique feature of patients who had a high 
risk for aGvHD before the overt onset of aGvHD (median = 15.0 days before diagnosis). There were several 
limitations in our study. First, we enrolled HLA-matched alloHSCT patients to maximize the homogeneity 
of the study. Thus, the GRS could only be applied in HLA-matched alloHSCT settings. For other kinds of  
alloHSCT, further identification and verification are needed. Second, small sample size was a major limitation 
in our study, which made it difficult to comprehensively analyze the prediction ability of GRS in populations 
from different backgrounds. However, the GRS showed powerful prediction ability for aGvHD with high AUC 
and discrimination ability with high OR. A prospective, multicenter clinical trial is needed in the future.

To the best of  our knowledge, this is the first study that identifies GRS as a potential warning signal 
that may help improve risk stratification for aGvHD. By integrative “Omic” analysis, we have offered both 
a comprehensive view of  the molecular perturbations underlying the pathogenesis of  aGvHD and an ini-
tial investigation of  a unique metabolic and transcriptomic network that may facilitate identification of  
aGvHD patients at a very early stage and help institute preemptive therapy. However, owing to the small 
sample size in our study, the results await further validation using a larger and independent cohort.

Methods
Patients and sample collection. This study was designed to assess whether plasma-derived metabolites, mea-
sured at the 15th day after transplant, could predict aGvHD. All patients (n = 128) who underwent HLA-
matched alloHSCT at the Changhai Hospital between September 2014 and June 2018 were enrolled in this 
study. The inclusion criteria are presented in Supplemental Methods. Twenty-one patients relapsed within 
6 months after alloHSCT. The study comprised a training set and a validation set. The median duration of  
follow-up was 33.43 months (range, 13.60–53.77), and the last date of  follow-up was December 31, 2018. 
The median age at alloHSCT was 36 years (range, 17–66); 43.93% patients were female. In brief, 27 allo-
geneic transplanted patients with aGvHD and 30 patients without aGvHD (controls) were enrolled as the 
training cohort, while 24 allogeneic transplanted patients with aGvHD and 26 patients without aGvHD 
(controls) were enrolled as the validation cohort for the metabolomics study.

Plasma samples were collected at predetermined time points for metabolomic analysis using citrate 
as an anticoagulant and centrifuged at 1,590 g for 15 minutes at room temperature. The peripheral blood 
mononucleated cells and plasma samples were collected for transcriptomic analysis at 15 days after trans-
plantation. aGvHD and amelioration of  aGvHD were diagnosed according to the generally accepted crite-
ria (44). All patients received prophylactic therapy with cyclosporine A, mycophenolate mofetil, and short-
term methotrexate (45). Clinical information, including aGvHD grade, is shown in Table 1. All plasma 
samples and mononucleated cells were stored at –80°C and in liquid nitrogen before analysis.

Metabolic profiling with LC-MS. Metabolic profiles of  all plasma samples were obtained using reversed-
phase–MS (RPLC-MS) and hydrophilic interaction chromatography–MS (HILIC-MS) platforms as 
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described elsewhere (46). Samples were randomized prior to LC-MS analysis to decrease experimental drifts. 
An in-house quality control (QC) mechanism was established by pooling and mixing equal amounts of  
plasma samples from all enrolled subjects; these were used to control intra- and interbatch variability. Details 
pertaining to sample preparation and LC-MS analysis methods are provided in the Supplemental Methods.

After nonlinear alignment of  the data in the time domain, automatic integration, and extraction of  the 
peak intensities, raw data containing retention time, intensity, and m/z pairs were obtained. Then, LC-MS 
data acquired from RP and HILIC columns were combined as a new data set and were used to perform 
metabolomics profiling analysis.

RNA isolation and transcriptome profiling. Total RNA was isolated from the peripheral blood mononucle-
ated cells and then quantified using a Bioanalyzer (Agilent Technologies). Whole transcriptome sequencing 
libraries (3 pairs of  aGvHD and controls, 6 libraries in total) were prepared according to the manufactur-
er’s instructions for the Whole Transcriptome Sample Prep Kit (Illumina) by GENEWIZ Company. After 
cutting off  the adaptor sequence and deleting low-quality reads, all sequencing reads were mapped to the 
human genome using TopHat. The mapped results were processed using Cufflinks, producing a fragments 
per kilobase of  transcript per million mapped reads (RPKM) data matrix and, with htseq-count, producing 
the raw hit counts data matrix. The raw hit counts gene matrices were transformed using DESeq variance 
stabilization algorithm and normalized using the quantile normalization function built into the Biocon-
ductor Limma package. The normalized data matrix was then analyzed using the Limma and SAMR 
algorithms. The gene expression data has been deposited in the National Center for Biotechnology Infor-
mation’s (NCBI) Gene Expression Omnibus (GEO) with accession number GSE131897.

GO-TermFinder was used to identify gene ontology (GO) terms that annotate a list of  enriched genes 
with a 1.5-fold change cutoff  and P ≤ 0.05. Gene function was then annotated on KAAS (KEGG Auto-
matic Annotation Server). For pathway enrichment analysis, we used scripts in house to enrich significant 
differential expression gene in KEGG pathways.

Quantitative PCR. RNA from plasma samples was extracted using standard TRIzol (Invitrogen) proto-
col. cDNA was reverse transcribed from total RNA, and quantitative PCR (qPCR) was performed using 
standard TaqMan chemistry and a laser-equipped thermal cycler to detect changes in fluorescence in real 
time (Applied Biosystems). cDNA concentrations were calculated according to the ΔCt method, corrected 
for differences in PCR efficiency, and normalized to expression levels of  U6. All primers for qPCR in the 
present study were purchased from Applied Biosystems (Supplemental Table 7).

Development of  GRS. In order to construct a signature with selected GPL metabolite biomarkers for pre-
dicting aGvHD, we adopted penalized logistic regression model with the LASSO penalty to achieve shrink-
age and variable selection simultaneously (47). The LASSO has been widely used for building prognostic 
signatures (48, 49), and the use of  the LASSO logistic regression model allowed us to integrate multiple 
GPL metabolites into a single tool; this significantly improved the predictive accuracy as compared with 
accuracy using single metabolite alone. LASSO logistic regression model analysis was conducted using 
the “glmnet” package of  the R software (version 3.4.3). The penalty parameter λ controls the amount of  
shrinkage. Usually, the optimal values of  λ is the value that gives minimum mean cross-validated error, and 
a larger λ could be chosen for greater penalty at accepted cross-validated errors (50). Using the regression 
coefficients from LASSO logistic regression model based on the training set, we developed a GRS.

Data processing and statistical analysis. The metabolomic data were normalized using L-2-chlorophenyl-
alanine as the internal standard. The  multivariate statistical model of  orthogonal partial least square dis-
criminate analysis (OPLS-DA) was constructed with the software SIMCA-P+ (version 11.0, Umetrics). A 
detailed description of  the identification of  biomarker metabolites is provided in the Supplemental Meth-
ods. Metabolic pathway analysis was performed via MetaboAnalyst 3.5 to identify, analyze, and visual-
ize the affected metabolic pathways. We investigated the predictive accuracy of  GRS using ROC curve 
analysis; AUC was used to measure the accuracy. The optimal cut-off  point of  GRS (associated with 
maximal sensitivity plus specificity) was used to divide patients into 2 groups: low and high GRS. To pro-
vide the clinician with a quantitative method to predict the risk of  aGvHD, we constructed a nomogram, 
and the performance of  the nomogram was explored graphically by calibration plots. OS was calculated 
from the time of  transplant until death from any cause. Estimated probabilities for OS were calculated 
by the Kaplan-Meier method, and the log-rank test was used to compare survival curves. Univariate and 
multivariate analysis were constructed using the Cox proportional hazard regression model. All statistical 
analyses were performed using the SPSS 20.0; “rms” package of  R 3.4.3 was used to prepare nomogram. 
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Two-tailed Student’s t tests were used for comparisons of  2 groups, and 1-way ANOVA was used for com-
parisons of  multiple groups. Two-sided P values less than 0.05 were considered statistically significant. 
Fold changes were calculated as the average mass response (area) ratio between 2 groups.

Study approval. All procedures complied with the Helsinki Declaration standards and were approved by 
the Changhai Hospital IRB. The requirement for written informed consent was waived because this study 
used retrospective data from medical records and there were no interventions in the patients.
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