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Simple Summary: Breast cancer (BC) is a group of diseases heterogeneous in morphology, progres-
sion, survival, and response to therapy. Although BC is among the most exhaustively studied cancers,
there is still a lack of molecular markers to predict its response to neoadjuvant chemotherapy (NACT).
Tumor development is determined by alterations not only of its genome, but of its epigenome as
well. In order to identify epigenomic markers of BC NACT effectiveness, we have applied genome-
wide DNA methylation screening of tumors in cohorts of NACT responders and nonresponders.
Combining several of the most informative DNA methylation markers, we suggest tiny diagnostic
panels that may be readily implemented in diagnostic laboratories. We also demonstrate that clinical
characteristics predictive of NACT response, such as the clinical stage and lymph node status, are
independently additive to the epigenetic classifiers and in combination improve prediction.

Abstract: Despite advances in the diagnosis and treatment of breast cancer (BC), the main cause
of deaths is resistance to existing therapies. An approach to improve the effectiveness of therapy
in patients with aggressive BC subtypes is neoadjuvant chemotherapy (NACT). Yet, the response
to NACT for aggressive subtypes is less than 65% according to large clinical trials. An obvious
fact is the lack of biomarkers predicting the therapeutic effect of NACT. In a search for epigenetic
markers, we performed genome-wide differential methylation screening by XmaI-RRBS in cohorts
of NACT responders and nonresponders, for triple-negative (TN) and luminal B tumors. The
predictive potential of the most discriminative loci was further assessed in independent cohorts
by methylation-sensitive restriction enzyme quantitative PCR (MSRE-qPCR), a promising method
for the implementation of DNA methylation markers in diagnostic laboratories. The selected most
informative individual markers were combined into panels demonstrating cvAUC = 0.83 (TMEM132D
and MYO15B markers panel) for TN tumors and cvAUC = 0.76 (TTC34, LTBR and CLEC14A) for
luminal B tumors. The combination of methylation markers with clinical features that correlate with
NACT effect (clinical stage for TN and lymph node status for luminal B tumors) produces better
classifiers, with cvAUC = 0.87 for TN tumors and cvAUC = 0.83 for luminal B tumors. Thus, clinical
characteristics predictive of NACT response are independently additive to the epigenetic classifier
and in combination improve prediction.
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1. Introduction

According to GLOBOCAN statistics (185 countries), 19.3 million new cases of cancer
were diagnosed in 2020, of which 11.7% (2,261,419 of cases) were breast cancer (BC), and
the death rate from BC was 684,996 people per year, which is more than in previous years.
In women, BC occupies a leading position in both new cancer cases and fatalities [1].

Despite advances in diagnosis, surgical treatment, and systemic therapy, the main
cause of death is resistance to existing therapies [2].

An approach to improve the effectiveness of therapy in patients with aggressive sub-
types of breast cancer, such as luminal B or triple-negative BC (TNBC), is the administration
of neoadjuvant (preoperative) chemotherapy (NACT). According to large clinical stud-
ies, when a pathomorphological complete response (pCR) is achieved because of NACT,
the survival of patients with aggressive subtypes of breast cancer is close to the survival
of patients with more favorable subtypes, compared with patients in this group with a
residual tumor [3]. In addition, in patients with locally advanced breast cancer, NACT is a
mandatory component of treatment of all breast cancer subtypes; it allows for a reduction
in the volume of the primary tumor and increases the frequency of organ-preserving opera-
tions. The response to neoadjuvant chemotherapy for aggressive subtypes is less than 65%
according to large breast cancer clinical trials [4].

At the same time, it has been shown that DNA methylation is an early and frequent
event in carcinogenesis [5].

DNA methylation (5-methylcytosine, 5-mC) is one of the best-studied epigenetic
modifications that acts directly on genomic DNA, where a CH3- group is added at the C5
position of the cytosine ring in the palindromic CpG dinucleotide. Methylation is known to
affect gene expression through the regulation of gene transcription [6]. Back in 2003, Peter
Laird described how recent advances in understanding the role of methylation in cancer
could one day lead to many powerful biomarkers based on DNA methylation, especially
for use as diagnostic markers in oncology [7]. This belief was based on a number of
characteristics of aberrant DNA methylation that make it a promising source of biomarkers:
abnormal DNA methylation is an early and frequent event in carcinogenesis, is easy to
detect using well-established methods, and is stable in fixed samples over time, and the
DNA molecule is stable double-stranded nucleic acid and can be detected in various body
fluids [5].

Although luminal B tumors are highly proliferative, they are less likely to respond
to NACT, as treatment resistance is common in this subtype. Therefore, luminal B is one
of the breast cancer subtypes that needs new markers to personalize the prescription of
preoperative chemotherapy and identify those patients who can get the maximum benefit
from treatment with a minimum effect of chemotherapy drug toxicity.

Neoadjuvant chemotherapy remains the gold standard of care for patients with TNBC,
but is characterized by limited efficacy, a narrow response time, and significantly toxic
profiles. TNBC is the most aggressive subtype with a higher metastasis rate, early recur-
rence, and poor overall survival, accounting for about 15–20% of all breast cancer cases.
Unfortunately, only one in three patients respond successfully to treatment [8], which
makes it urgent to find alternative methods for predicting the response of each patient
in order to provide patients with more individualized medical care. The task of forming
epigenetic diagnostic panels for predicting the effectiveness of NACT in breast cancer
patients can be effectively solved using a modern method of genome-wide analysis of
DNA methylation, reduced representation bisulfite sequencing (RRBS). RRBS increases
the relative informational value of DNA methylation analysis compared to whole-genome
bisulfite sequencing (WGBS): each RRBS sequence read includes at least one informative
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CpG position. Theoretically, RRBS is better than WGBS and is applicable to large-scale
studies of DNA methylation and the search for markers of epigenetic processes in health
and disease, since RRBS focuses on functionally significant methylation in CpG islands,
ignoring less clinically significant regions [9].

2. Materials and Methods
2.1. Patients Treatment and Tumor Samples

This study included 156 patients with early (T1-2N0-1M0) and locally advanced
(T2-4N2-3M0) TNBC or with luminal B breast cancer of the IIA-IIIC clinical stages. Genome-
wide bisulfite sequencing was performed on 73 breast cancer biopsy specimens (discovery
cohort) obtained before neoadjuvant chemotherapy to select genome regions for the further
formation of DNA methylation panels of a limited number of the most informative markers.
On an independent cohort of 83 core biopsy specimens taken before NACT, we performed
an evaluation of the diagnostic significance of DNA methylation panels by quantitative
multilocus methylation-sensitive restriction enzyme quantitative PCR (MSRE-qPCR).

The discovery cohort consisted of 29 TNBC samples and 44 samples of luminal B
immunohistochemical subtypes (Table 1). The NACT scheme for a group of patients
with TNBC was eight courses of doxorubicin, cisplatin, and paclitaxel. Patients with
luminal B subtype tumors received 2 to 4 courses of NACT with CAX (cyclophosphamide
+ doxorubicin + xeloda) or FAC (fluorouracil + doxorubicin + cyclophosphamide).

Table 1. Clinical and pathological characteristics of discovery cohort patients (n = 73) and independent
cohort patients (n = 83). p-value shows statistical differences in clinical features between cohorts.

Discovery Cohort Independent Cohort p-Value 1

TN BC
p-Value 2

lum.B BC

TNBC,
N (%); n = 29

Luminal B,
N (%); n = 44

TNBC,
N (%); n = 48

Luminal B,
N (%); n = 35

Age median 48 (min 25;
max 68)

48 (min 27;
max 68)

56 (min 34;
max 77)

61 (min 37;
max 75) 0.02 <0.001

Tumor size

T0 3 (10.3) - - -

0.76 0.06

T1 1 (3.4) 10 (22.7) 3 (6.25) -

T2 15 (51.7) 32 (72.2) 30 (62.5) 28 (80)

T3 1 (3.4) - 6 (12.5) 6 (17.14)

T4 9 (31) 2 (4.5) 9 (18.75) -

No data - - - 1 (2.86)

Lymph node
status

N0 12 (41.4) 16 (36.4) 29 (60.42) 12 (34.29)

0.10 0.99

N1 8 (27.6) 22 (50.0) 10 (20.83) 22 (62.86)

N2 1 (3.4) 3 (6.8) 2 (4.17) -

N3 8 (27.6) 3 (6.8) 7 (27.6) -

No data - - - 1 (2.86)

NACT
response

Sensitive
tumors 13 (44.8) 25 (56.8) 33 (68.75) 19 (55)

0.03 0.82
Resistant
tumors 16 (55.2) 19 (43.2) 15 (31.25) 16 (45)

1—p-value for comparing clinical features between cohorts in TN breast cancer. 2—p-value for comparing clinical
features between cohorts in luminal B breast cancer.

The independent cohort consisted of 48 TNBC samples and 35 samples of the luminal
B subtype (Table 1). In this cohort, the NACT regimen for TNBC patients was 8 courses of
doxorubicin, cisplatin, and paclitaxel. Patients with luminal B tumors received 4–6 courses
of adriamycin (doxorubicin) and cyclophosphamide.



Cancers 2023, 15, 1630 4 of 19

A statistical comparison of clinical features between the discovery and independent
cohorts determined significant differences in patient’s ages (p = 0.02) and NACT response
(p = 0.03) for TN breast cancer and luminal B BC (p < 0.001). No other statistical differences
were found.

2.2. Evaluation of Neoadjuvant Chemotherapy

The effect of neoadjuvant chemotherapy was assessed based on the results of clinical
examination, ultrasound, and mammography. For luminal B tumors of a discovery cohort,
the response to NACT was classified according to the RECIST criteria for evaluating the
response in solid tumors (version 1.1) [10]. A complete regression was defined as the
complete disappearance of the primary tumor and lymph node metastases. Such tumors
were classified as sensitive to NACT. A partial response was defined as tumor reduction by
≥30% and such tumors were also referred to as sensitive. NACT-resistant tumors included
those with post-NACT stabilization (<30% tumor reduction or <20% tumor size increase)
and progression (≥20% tumor size increase). For TNBC, the evaluation was performed
according to the Lavnikova scale. Samples with a pathological complete response (pCR)
were assigned to the group of tumors sensitive to NACT and all the rest to the group of
resistant tumors. The response to NACT of tumors from an independent cohort of both
triple-negative and luminal B subtypes was assessed using the Residual Cancer Burden
(RCB) scale [11]. The sensitive group included samples with RCB0-RCB2; RCB3 tumors
were classified as resistant.

2.3. DNA Isolation

DNA was isolated by the classical phenol–chloroform method. After the complete
dissolution of the precipitate, DNA concentration was measured on a Qubit 4 fluorimeter
(Thermo Fisher Scientific, Waltham, MA, USA) using Qubit DNA BR Assay Kits (Thermo
Fisher Scientific, Waltham, MA, USA).

2.4. Genome-Wide DNA Methylation Analysis

Genome-wide bisulfite DNA sequencing was performed according to the previously
described XmaI-RRBS technology [12] on an Ion Torrent PGM sequencer (Thermo Fisher
Scientific, USA).

Briefly, the DNA was treated with restriction endonuclease XmaI, and then the sticky
ends were partially blunted with methylated cytosines using a 3′-5′ Klenow exo- and ligated
with adapters containing methylated cytosines (presented in Supplementary Table S1). The
libraries obtained were selected by length to obtain a fraction of fragments with an insert
size of 100–200 bp, with subsequent bisulfite conversion using the Qiagen EpiTect Bisulfite
Kit (Qiagen, Hilden, Germany). To avoid the nonspecific priming of the 3′ ends of DNA
fragments in the polymerase reaction to follow, those were blocked with chain-terminating
dideoxynucleotides using the SNaPshot Multiplex Kit (Thermo Fisher Scientific, USA).
Then, RNase A (Sigma-Aldrich, St. Louis, MO, USA) and alkaline phosphatase (SibEnzyme,
Novosibirsk, Russia) were used to remove the carrier RNA used in the EpiTect Bisulfite
Kit protocol and dephosphorylate residual ddNTPs, respectively. The final libraries were
amplified by PCR, the number of cycles of which was determined based on preliminary
measurements by quantitative PCR. The resulting libraries were quantified on a Qubit 4.0
fluorimeter (Thermo Fisher Scientific, USA).

Emulsion PCR was performed on an Ion OneTouch 2 instrument using Ion OneTouch
200 kits (Thermo Fisher Scientific, USA) according to the manufacturer’s instructions. The
resulting Ion Sphere Particles (ISPs) were enriched at 37 ◦C using an Ion OneTouch ES
system (Thermo Fisher Scientific, USA).

The sequencing results were processed using standard Ion Torrent Suite software.
Bismark software [13], which was used to align the obtained reads on the GRCh37/hg19
human genome sequence using the Bowtie 2 aligner [14].
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2.5. DNA Methylation Markers’ Selection Criteria

From the RRBS results, CpG dinucleotides were selected, for which no more than
20% of missing data on the methylation level were observed in the entire set of studied
samples. Hierarchical clustering was performed for thus obtained CpG dinucleotides using
the normalized pairwise Manhattan distance and the ward D2 agglomerative method [15].
To form a list of candidate markers, we selected loci whose differential methylation signifi-
cantly differed (nominal p < 0.05) in groups of tumors resistant and sensitive to neoadjuvant
chemotherapy after applying the Mann–Whitney test and for which there was information
on the methylation status of 4 or more consecutive CpG pairs in the region. The difference
in TERT and DPYS methylation levels between the groups did not pass the threshold of
statistical significance; however, these loci were included in the further study due to their
biological role.

2.6. Design of Primers for PCR Multiplex Assays

To select genome regions for inclusion in MSRE-qPCR-based assays, the following
criteria were used: location in the region of the XmaI-RRBS library fragment (between two
XmaI restriction enzyme sites), the presence of at least 3 recognition sites for methylation-
sensitive restriction enzyme BstHHI; length of potential PCR product of no more than
400 bp; and flanking areas of a target locus not containing BstHHI recognition sites of at
least 50 bp.

Alongside target loci (DNA methylation markers), each multiplex MSRE-qPCR assay
was designed to include a positive internal control (PC) and a digestion efficacy control
(DC). Loci for the PC were selected from 4 regions of the genome not containing recognition
sites for the restriction enzyme used (regions of the CpG islands of the SBNO2, LINC00493,
and CLDND1 genes and the intergenic CpG-island on chromosome 18q21.33). The DCs
were selected from 5 genome regions, each containing 2 restriction enzyme recognition sites
and nonmethylated both in normal tissues and in tumors (CpG islands of the TMEM158,
ANO10, and ABHD5 genes) (Supplementary Table S2).

DC scores were not used for target methylation level calculation. They were only
used for DNA hydrolysis quality control. Samples that demonstrated ∆Ct < 6 for the DCs
in digested versus nondigested aliquots were excluded from the final analysis. Primers
and TaqMan probes were designed using MPprimer 1.4 software [16]. All candidate
markers were combined into 11 pools according to the compatibility matrix in multilo-
cus PCR. Each pool contained 1 to 3 target loci and 2 internal controls, a PC and DC
(Supplementary Table S3).

2.7. Processing of DNA with Methylation-Sensitive Restriction Enzyme and MSRE-qPCR

As a template for qPCR, we used DNA samples hydrolyzed with BstHHI (SibEnzyme,
Russia) restriction enzyme (GCG/C recognition site), as well as intact DNA, without
the addition of BstHHI but maintaining the reaction conditions and the composition of
the reaction mixture. Enzymatic hydrolysis was carried out in a total volume of 35 µL,
containing 10 units of restriction endonuclease, 3.5 µL of 10× SE-buffer Y (SibEnzyme,
Russia), and 60 ng of DNA for 12 h at 50 ◦C.

PCR was performed on a QuantStudio 5 (Thermo Fisher Scientific, USA) in GenPak
PCR Core kit (Isogen, Moscow, Russia) plates, in 20 µL reaction volumes containing 10 µL
of PCR Diluent (supplied with GenPak PCR Core kit), 300 nM of each primer, 200 nM of
each TaqMan probe, and 10 ng of the input DNA template. The PCR program for all pools
was unified to simplify the use of the laboratory protocol: the reaction was heated at 95 ◦C
for 5 min and 50 PCR cycles were performed as follows: primary template denaturation at
95 ◦C for 30 s and annealing combined with elongation for 2 min with signal detection at
this stage. Primer annealing temperatures were selected empirically for each pool.

The determination of the methylation level according to MSRE-qPCR results was per-
formed using the ∆∆Cy0 method. The methylation level of the target locus (tgt) relative to
the PC locus, which does not contain restriction enzyme recognition sites, was determined
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by the following formulas in pairs of samples, MS (treated with methylation-sensitive
restriction enzyme) and mock (without enzyme treatment):

∆Cy0PC = Cy0MS
PC − Cy0mock

PC

where Cy0MS
PC is the Cy0 value for the PC locus when treated with a methylation-sensitive

restriction enzyme, and Cy0mock
PC is the Cy0 value for the PC locus without treatment with a

methyl-sensitive restriction enzyme;

∆Cy0tgt = Cy0MS
tgt − Cy0mock

tgt

where Cy0MS
tgt is the Cy0 value for the target locus when treated with a methylation-sensitive

restriction enzyme, and Cy0mock
tgt is the Cy0 value for the target locus without treatment with

a methyl-sensitive restriction enzyme;

∆∆Cy0tgt = ∆Cy0tgt − ∆Cy0PCBtgt = E−∆∆Cy0tgt ;

where the Btgt is the methylation level of the target locus and E is the PCR efficiency.

2.8. DNA Methylation Marker Panels’ Development Criteria

To combine individual DNA methylation markers into panels, markers were selected
that demonstrated cvAUC > 0.5 according to the results of MSRE-qPCR. From the resulting
panels, the best ones were selected in terms of cvAUC.

2.9. Statistical Analysis

Statistical data processing and visualization of the results were carried out using the
programming language for statistical data processing, R.

Clinical features between the discovery and independent cohorts were compared
using the Wilcoxon test for patient’s age and Chi-squared test for other features.

Over-representation analysis (ORA) was carried out using g:Profiler portal (https:
//biit.cs.ut.ee/gprofiler/gost (accessed on 23 February 2023)).

DNA methylation markers were selected from XmaI-RRBS data using the Wilcoxon–
Mann–Whitney test.

Point-biserial correlation was used to test the independence between DNA methylation
markers and the clinical parameters of patients. Differences were considered significant at
p < 0.05. To determine the correlations between the methylation level of epigenetic markers
and clinical/morphological features, the coefficient ρwas used.

Higher ρ coefficients denote a stronger magnitude of relationship between variables.
Smaller ρ coefficients denote weaker relationships. Positive correlations denote a rela-
tionship that travels at the same trajectory. As one value goes up, the other value goes
up.

When assessing the strength of correlations, the Chaddock scale was used. An FDR
correction for multiple hypothesis testing was applied.

A Chi-square test was used to assess the significance of the association of clinical
features and the response to NACT. Differences were considered significant at p < 0.05. To
determine the relationship between the response to therapy and clinical/morphological
features, the coefficient ϕwas used.

The ϕ coefficient is similar to the correlation coefficient in its interpretation. The ϕ
coefficient value can be between 0 and 1. A coefficient of zero (0) indicates that the variables
are perfectly independent. The larger the coefficient, the closer the variables are to forming
a pattern that is perfectly dependent, which is 1.

When assessing the strength of the relationship of the correlation coefficient, the
Chaddock scale was used.

As a classification algorithm, logistic regression with a standard threshold of 0.5 was
used to determine if a sample belongs to the group of sensitive or resistant to NACT.

https://biit.cs.ut.ee/gprofiler/gost
https://biit.cs.ut.ee/gprofiler/gost
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For assessing goodness-of-fit epigenetic and combined marker panels logistic regres-
sion models, a likelihood ratio test was used.

Classification quality was analyzed using ROC curves (ROC analysis). Due to the
moderate number of patients in the cohorts tested in our study, cross-validation was
used to characterize individual markers and their combinations. The procedure of the
cross-validation of models was carried out by the 100-fold randomized division of an
independent cohort of breast cancer samples into training and a test in the ratio of 75%
and 25%, respectively. A cross-validated AUC (cvAUC) R package was used to calculate
ROCcurves (https://github.com/ledell/cvAUC (accessed on 15 October 2022)). The most
favorable sensitivity and specificity points for classifiers were obtained using the Youden
index.

The NACT response score (NRS) was determined by the following formula:

NRS =
exp(PRS)

1 + exp (PRS)

where PRS is a patient’s risk score:

PRS = β0 + ∑n
i = 1(βmarkeri

∗ markeri)

where β0 is an intercept of logistic regression model, βmarker is a regression coefficient,
marker is a DNA methylation marker’s methylation value measured by MSRE-qPCR, and n
is a number of elements in the diagnostic panels.

3. Results
3.1. An Unbiased Genome-WIDE DNA Methylation Markers Screening by XmaI-RRBS

In this study, genome-wide bisulfite sequencing was performed on 73 breast cancer
biopsy specimens obtained prior to neoadjuvant chemotherapy. The samples constituted
a discovery cohort for a genome-wide NACT response markers search from 29 samples
of triple-negative breast cancer and 44 samples of luminal B subtypes. Based on the
results of XmaI-RRBS sequencing, we obtained data on average of 118 million base pairs in
750,000 reads per sample with an average depth of 50.

The sequencing data obtained were placed in the GEO database, under the num-
bers GSE123712 and GSE123828, and can be used by other research teams to conduct
comparative studies and explore breast cancer epigenetics.

Upon the results of XmaI-RRBS, 290 differentially methylated genes marking NACT-
resistant and -sensitive triple-negative (Figure 1) tumors and 202 genes marking luminal B
(Figure 2) tumors were identified in the discovery cohort. Gene lists are presented in the
Supplementary Materials and Supplementary Table S10.

Candidate markers enrichment for specific biological processes, molecular functions,
and KEGG pathways was assessed using an over-representation analysis (Supplementary
Figures S3–S5 and Table S11).

Based on the presented lists of differentially methylated genes and taking into account
the criteria for selecting genome regions for inclusion in panels, the set of candidate DNA
methylation markers was determined to further design panels of a limited number of
markers of TNBC sensitivity to NACT: CDO1, CLEC14A, DLEU2, BNC1, PRKCB, GMDS,
TERT, TTC34, TMEM132D, VGLL4, ABCA3, DPYS, IRF4, TMEM132C, SFRP2, SOX21, and
MYO15B (17 markers) and for luminal B: LTBR, NRN1, TERT, TTC34, TMEM132D, VGLL4,
ABCA3, DPYS, IRF4, TMEM132C, SFRP2, and MYO15B (12 markers).

https://github.com/ledell/cvAUC
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Figure 1. (A) Genome-wide bisulfite DNA sequencing (XmaI-RRBS) results from TNBC samples 
obtained before neoadjuvant chemotherapy. The heat map shows the level of methylation: red—
100%, yellow—50%, green—0%, gray—missing data in NACT-sensitive and -resistant TNBC sam-
ples. Each row represents the methylation of a CpG dinucleotide in the samples by column. (B) 
Volcano plot indicating differentially methylated CpG-dinucleotides in TNBC tumors. X axis repre-
sents methylation difference between resistant and sensitive tumor samples; Y axis stands for −log10 
scaled nominal p-value. Most informative CpG-pairs revealed by MSRE-qPCR in an independent 
cohort are marked with gene names they map to. 

Figure 1. (A) Genome-wide bisulfite DNA sequencing (XmaI-RRBS) results from TNBC samples
obtained before neoadjuvant chemotherapy. The heat map shows the level of methylation: red—100%,
yellow—50%, green—0%, gray—missing data in NACT-sensitive and -resistant TNBC samples. Each
row represents the methylation of a CpG dinucleotide in the samples by column. (B) Volcano
plot indicating differentially methylated CpG-dinucleotides in TNBC tumors. X axis represents
methylation difference between resistant and sensitive tumor samples; Y axis stands for −log10
scaled nominal p-value. Most informative CpG-pairs revealed by MSRE-qPCR in an independent
cohort are marked with gene names they map to.
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Figure 2. (A) Genome-wide bisulfite DNA sequencing (XmaI-RRBS) results from luminal B breast 
cancer samples obtained before neoadjuvant chemotherapy. The heat map shows the level of meth-
ylation: red—100%, yellow—50%, green—0%, gray—missing data in NACT-sensitive and -resistant 
luminal B breast cancer samples. Each row represents the methylation of a CpG dinucleotide in the 
samples by column. (B) Volcano plot indicating differentially methylated CpG-dinucleotides in lu-
minal B tumors. X-axis represents methylation difference between resistant and sensitive tumor 
samples; Y-axis stands for −log10 scaled nominal p-value. Most informative CpG-pairs revealed by 
MSRE-qPCR in an independent cohort are marked with gene names they map to. 

Candidate markers enrichment for specific biological processes, molecular functions, 
and KEGG pathways was assessed using an over-representation analysis (Supplementary 
Figures S3–S5 and Table S11). 

Based on the presented lists of differentially methylated genes and taking into ac-
count the criteria for selecting genome regions for inclusion in panels, the set of candidate 

B 

Figure 2. (A) Genome-wide bisulfite DNA sequencing (XmaI-RRBS) results from luminal B breast
cancer samples obtained before neoadjuvant chemotherapy. The heat map shows the level of methy-
lation: red—100%, yellow—50%, green—0%, gray—missing data in NACT-sensitive and -resistant
luminal B breast cancer samples. Each row represents the methylation of a CpG dinucleotide in
the samples by column. (B) Volcano plot indicating differentially methylated CpG-dinucleotides in
luminal B tumors. X-axis represents methylation difference between resistant and sensitive tumor
samples; Y-axis stands for −log10 scaled nominal p-value. Most informative CpG-pairs revealed by
MSRE-qPCR in an independent cohort are marked with gene names they map to.



Cancers 2023, 15, 1630 10 of 19

In the generated list, 11 markers (TERT, TTC34, TMEM132D, VGLL4, ABCA3, DPYS,
IRF4, TMEM132C, SFRP2, SOX21, and MYO15B) potentially mark sensitivity to NACT of
tumors of both BC subtypes under study.

The predictive value of the above candidate differential methylation markers was
further assessed by MSRE-qPCR, as far as we deem it an optimal method for the practical
implementation of differential DNA methylation assays.

3.2. Predictive Value of Differential Methylation Markers Assessed by MSRE-qPCR

Considering all the requirements described in the Materials and Methods section, 11 mul-
tiplex MSRE-qPCR assays (pools of primers/probes) were designed (G1–G5, TN1–TN4, TN6,
and LB1). The G (general) pools include markers that discriminate both TN and luminal
B tumors in terms of response to NACT; the TN (triple-negative) pools include markers
exclusive for TNBC and the LB (luminal B) pools for the luminal B subtype. Primers and
probes for each of the pools are presented in Supplementary Table S3, and related functions
of the marker genes are listed in Table 2.

Table 2. Methylation marker genes selected for MSRE-qPCR assays and the function of proteins
encoded by these genes.

Pool
(Test-System) Target Locus Related Function of the Encoded Proteins

G1
TERT Cellular regulation

TTC34_1 Transmembrane transporters and their regulators
TMEM132D_3 Transmembrane transporters and their regulators

G2
TMEM132D_2 Transmembrane transporters and their regulators

VGLL4_2 Transcription regulation

G3
ABCA3_1 Transmembrane transporters and their regulators
DPYS_1 Metabolic enzymes and their regulators

IRF4 Immune response

G4
TMEM132C_1 Transmembrane transporters and their regulators

SFRP2_1 Receptors and signal transduction

SOX21 Transcription regulation
G5 MYO15B Noncoding transcripts

TMEM132D Transmembrane transporters and their regulators

TN1
ABCA3_1 Transmembrane transporters and their regulators
CDO1_1 Metabolic enzymes and their regulators

CLEC14A_1 Cell adhesion

TN2 DLEU2_1 Noncoding transcripts

TN3
BNC1_1 Transcription regulation
SFRP2_1 Receptors and signal transduction
TTC34_1 Transmembrane transporters and their regulators

TN4
PRKCB_2 Receptors and signal transduction
GMDS_1 Metabolic enzymes and their regulators
PRKCB_2 Receptors and signal transduction

TN6 MYO15B_1 Noncoding transcripts
TMEM132D_1 Transmembrane transporters and their regulators

LB1 LTBR Receptors and signal transduction
NRN1 Cellular regulation

Using the MSRE-qPCR method, we measured the methylation level of individual
candidate markers (for vast differentially methylated regions, several loci were assessed,
within the same gene) of tumor sensitivity to neoadjuvant chemotherapy in an independent
cohort (n = 83) of TN and luminal B tumors. The predictive value of individual markers was
characterized in terms of cvAUC (cross-validated area under the ROC curve), sensitivity,
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and specificity. The results in TN and luminal B tumor groups are shown in Supplementary
Tables S4 and S5, respectively.

The highest predictive values in terms of predicting the sensitivity to NACT of triple-
negative tumors, were shown by methylation markers of the TMEM132D, ABCA3, DPYS,
MYO15B, GMDS, CDO1, SFRP2, DLEU2, IRF4, TMEM132C, and VGLL4 genes (cvAUC
values are in order decreasing from 0.72 to 0.59). All markers demonstrate hypomethylated
status in the group of NACT-sensitive tumors compared to the group of resistant ones.
For the luminal B group of tumors, most informative were the methylation markers of the
LTBR, VGLL4, DPYS, CLEC14A, and TTC34 genes (cvAUC in descending order from 0.69
to 0.56). The markers of LTBR, VGLL4, and CLEC14A showed a hypomethylated status in
the group of sensitive tumors compared with the resistant group, while the DPYS marker
showed a hypermethylated status in sensitive tumors.

3.3. Development of DNA Methylation Marker Panels

The accuracy of diagnostics can be significantly improved by combining several
markers into panels [17]. To achieve this, we combined the most informative individual
DNA methylation markers in panels (Supplementary Tables S6 and S7). When forming
combinations of markers, no more than four markers per panel were taken, as far as the
qPCR format usually allows no more than six detection channels (two channels are occupied
by PC and DC controls in MSRE-qPCR assays).

Combining individual markers into panels improved the quality of NACT response
classifiers for triple-negative tumors up to cvAUC = 0.83 (TMEM132D and MYO15B mark-
ers panel, with sensitivity and specificity both equal 0.76) and up to cvAUC = 0.76 (TTC34,
LTBR, and CLEC14A markers panel, with sensitivity of 0.7 and specificity of 0.79) for
luminal B tumors.

The same classifiers validated using the RRBS results demonstrated similar perfor-
mance: cvAUC = 0.83 with sensitivity of 0.87 and specificity of 0.67 for TMEM132D
and MYO15B; cvAUC = 0.67 with sensitivity of 0.6 and specificity 0.75 for TTC34, LTBR,
CLEC14A (Supplementary Figure S6).

3.4. Combination of Epigenetic, Clinical, and Morphological Markers Improves Prediction of
NACT Response in BC

Statistical analysis has revealed no significant associations between the level of methy-
lation of the studied markers and clinical and morphological characteristics of breast cancer,
such as the patient’s age, tumor size (T), regional lymph nodes status (N), or stage, for both
TN and luminal B tumor groups, after applying multiple-testing correction (Supplementary
Figures S1 and S2). This observation allows us to suggest that clinical and morphological
characteristics predictive of the NACT response, if any, would be independently additive
to the epigenetic classifier, and combining epigenetic, clinical, and morphological markers
would further improve prediction of NACT response.

Correlations between different clinical features and the response to NACT in our
cohorts are presented in Figures 3 and 4. In the TN subtype, a significant correlation
(p < 0.05) was found between the tumor response to NACT and clinical stage (ϕ = 0.4365),
the clinical stage and tumor size (ϕ = 0.5789), and the clinical stage and lymph node status
(ϕ = 0.6395).

There is a moderate correlation between the NACT response and lymph node status
in the luminal B group of tumors (p < 0.05; ϕ = 0.573). In addition, a high correlation was
found in the luminal B group between the clinical stage of the tumor and its size (p < 0.05;
ϕ = 0.7976).

The association of the clinical stage with the tumor size and the lymph node status
may be explained by the derivation of the clinical stage from the TNM characterization of
the tumor.
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The results of the correlation analysis suggest that the addition of the variable “clinical
stage, S” for TN breast cancer, and “lymph node status, N” for luminal B tumors might
add to the quality of the developed molecular epigenetic classifiers. We have added S
and N predictors to DNA methylation markers for TN and luminal B tumors, respectively,
and reevaluated the diagnostic characteristics of the resulting panels (Supplementary
Tables S8 and S9 and Figure 5).

Using classifiers, consisting not only of epigenetic markers, but also of clinical ones,
makes it possible to develop a classifier with significantly better characteristics than using
only DNA methylation markers or clinical features (Figure 6). For lum.B tumors, a DNA
methylation panel including “LTBR, CLEC14A, N” shows cvAUC = 0.83; 95% CI = 0.82–0.85,
with a sensitivity of 0.89 and a specificity of 0.71. For TN breast cancer, the inclusion of the
clinical stage in the epigenetic classifier made it possible to achieve an area under the curve
cvAUC = 0.87; 95% CI = 0.86–0.88 with a sensitivity of 0.71 and a specificity of 0.80 for the
“TMEM132D, TMEM132C, MYO15B, S” panel.
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We assessed epigenetic and combined marker panels using a likelihood ratio test. As
a result, the combined model for TN breast cancer (TMEM132D, TMEM132C, MYO15B, S)
demonstrated statistical significance (p = 0.0004) vs. the epigenetic model (TMEM132D,
TMEM132C, MYO15B). The luminal B breast cancer subtype combined (LTBR, CLEC14A, N)
vs. the epigenetic model (LTBR, CLEC14A) also showed statistical significance (p = 0.006).

To investigate the potential predictive value of combined epigenetic and clinical panels,
we calculated the NACT response score for epigenetic panels developed within this study
and combined it with independent clinical features, such as the tumor size, lymph node
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involvement, clinical stage, and patient’s age (Figure 7). The association between the NRS
and NACT response retained statistical significance when using clinical features, such
as the clinical stage for TN breast cancer subtype (OR = −0.47 (95% CI = −0.76; −0.20)
p = 0.002) and lymph node involvement for luminal B breast cancer (OR = −0.55 (95%
CI = −0.86; −0.24), p = 0.001).
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4. Discussion

Breast cancer is a group of diseases that is extremely heterogeneous in terms of
clinical and morphological characteristics, progression, survival, response to therapy, and
molecular profiling [18]. For BC, molecular genetic classifiers are being actively developed
with the prospect of using them as sets of prognostic and predictive markers [19]. Although
BC is among the most exhaustively studied cancers, there is still a lack of molecular markers
to predict its response to neoadjuvant chemotherapy (NACT) [20]. Tumor development is
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determined by alterations not only of its genome, but of its epigenome as well. In order to
identify epigenomic markers of BC NACT effectiveness, we have applied genome-wide
DNA methylation screening of tumors in cohorts of NACT responders and nonresponders.
As a result, we demonstrate the predictive potential of DNA methylation markers in
assessing the BC response to NACT. To characterize DNA methylation markers in an
independent cohort, the MSRE-qPCR method was used, which has competitive analytical
sensitivity and allows a reduction in analysis time and expenses, as well as the volume of
input tissue material, which is critical in biopsy analysis.

We have performed genome-wide bisulfite sequencing on 73 BC biopsy samples
(discovery cohort) obtained prior to NACT to select genome regions to further develop
DNA methylation panels of a limited number of markers. The discovery cohort consisted
of 29 samples of TNBC and 44 samples of luminal B tumors. Other research groups
have developed sets of genome-wide DNA methylation data, some on larger collections
of BC samples [21–23]; however, the most common way to obtain data nowadays is
probe hybridization that allows for determining the status of the methylation of only
a predesigned selection of CpG dinucleotides. The fundamental difference between the
methods based on microarray hybridization and bisulfite sequencing is that the latter
allows an assessment of each and every CpG pair in a locus, thus presenting the full picture
of methylation at a genome regulatory region of interest.

To perform genome-wide bisulfite sequencing, we have used our version of reduced
representation bisulfite sequencing, XmaI-RRBS [12]. In general, compared to the whole-
genome bisulfite sequencing (WGBS), RRBS approaches increase the relative informational
value of DNA methylation analysis: each RRBS sequence read includes at least one infor-
mative CpG position. Theoretically, RRBS is better applicable to large-scale studies of DNA
methylation and in the search for markers of epigenetic processes in health and disease
than WGBS, since RRBS focuses on functionally significant methylation in CpG islands,
which constitute a small portion of the genome, and ignores the major portion that is less
significant for clinical research [9].

To our knowledge, by now only one panel of DNA methylation markers to predict the
BC response to NACT have been published [24]. Begona Pineda et al. have proposed a DNA
methylation assay based on the levels of methylation of the FERD3L and TRIP10 genes,
with AUC = 0.905 (78.6% accuracy), for predicting pathological complete response (pCRs)
in TNBC patients treated with anthracyclines and taxanes [24]. In their study, exploratory
analysis for a genome-wide search for DNA methylation markers was performed using
Infinium Human Methylation 450 K microarrays on a cohort of 24 patients, twice smaller
than ours. However, it is valuable that their study was the first to demonstrate the potential
of DNA methylation markers in assessing the BC response to NACT.

We previously published a study [9] in which we examined 25 luminal B breast
cancer biopsies obtained prior to neoadjuvant chemotherapy. In the current study, these
25 samples were included in a bigger discovery cohort and the fundamental approach to
data analysis and the formation of panels from a limited number of DNA methylation
markers was changed. For example, we selected markers among loci for which methylation
information was obtained for at least four consecutive CpG pairs. The change in approach
to the analysis of XmaI-RRBS results does not allow us to combine the results of the two
studies; however, the expanded discovery sample provides a broader view of differential
methylation in the luminal B breast cancer.

Some of the predictive factors used to make decisions regarding BC systemic treatment
are the tumor size, status of lymph node involvement, and clinical stage [25]. Moreover,
in addition to the widely used surrogate molecular markers ER, PR, HER2, and Ki-67,
attempts are being made to search for both new potential markers and a more detailed
study of markers that are not common in clinical practice, such as proliferating cell nuclear
antigen PCNA [26], caveolin [27], and chemokine receptor CXCR4 [28]. Since there is still
no gold standard, it is important to continue attempts to search for new predictive markers
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and, if possible, to pay attention to combined panels of markers of various natures (genetic,
epigenetic, transcriptomic, proteomic, clinical, morphological).

Some of the epigenetic markers identified in our study, TMEM132D, MYO15B, TTC34,
LTBR, and CLEC14A genes, whose methylation levels showed the best classification of
BC sensitivity to NACT, were previously partially studied in terms of involvement in
the etiopathogenesis of malignant neoplasms and potential use as diagnostic markers in
oncology.

Mutations in the TMEM132D gene were found in pancreatic cancer [29] and small
cell lung cancer [30]. The gene itself codes for transport receptors in the brain. Specific
studies of its methylation in breast cancer, or associations with chemotherapy, have not
been performed, but it was published that its overexpression correlates with cytotoxic
T-lymphocytes infiltration and better survival in patients with early-stage ovarian can-
cer [31]. MYO15B genetic variants were found to be associated with an increased risk
of depressive disorder in females [32], and the function of the protein is unknown, since
it lacks a motor domain according to the GeneCards database. TTC34 is a paralog of
the TMTC4 gene responsible for protein–protein interactions. The function of TTC34 is
unknown. TTC34 was upregulated in luminal and triple-negative BC subtypes upon
LINC01087 overexpression [33]. LTBR (lymphotoxin beta receptor) is probably the most
interesting of the list. It is a member of the tumor necrosis factor family and is closely
associated with carcinogenesis [34], but gene methylation has not previously been studied
as a predictive marker in oncology. CLEC14A is involved in regulating the growth of cancer
cells, maintaining body hemostasis, and facilitating cell communication [35]. It is found
in the tumor endothelium and is a tumor endothelial marker [36]. Gene methylation is
also associated with carcinogenesis [37] but has not been studied as a predictive marker in
breast cancer.

Finally, some limitations and perspectives of this study are to be discussed. Many
of the markers selected in the discovery cohort are not significantly associated with the
NACT response in the independent cohort. This can be explained both by the use of two
fundamentally different platforms for the analysis of cohorts and by the use of a nominal
p-value when selecting markers from the results of the genome-wide RRBS screening,
which could lead to false positive hits included in the list of candidate markers identified
in the discovery cohort. Taking into account such limitations, we formed a deliberately
large number of panels for validating RRBS findings and formed both subtype-specific test
systems and universal ones (for TN and lum.B subtypes of breast cancer).

In order to support our results, larger independent cohorts should be tested. This will
increase precision and allow us to better understand the meaning of DNA methylation
in terms of the responses of different subtypes of BC to NACT. If our findings are well
confirmed on independent validation cohorts and lead to the clinical implementation of
DNA methylation markers for treatment prediction, an improvement in BC NACT may be
anticipated. One of the intriguing research perspectives is the assessment of the dynamics
of methylation levels of the markers as a result of NACT. Studying methylation changes
associated with chemotherapy may shed more light on the biology of the tumor response
to treatment and on the nature of tumor chemoresistance.

5. Conclusions

As a result of this study, we confirmed our hypothesis about the high predictive poten-
tial of DNA methylation markers in assessing the response to neoadjuvant chemotherapy
in breast cancer. The use of combined predictors, including not only epigenetic markers,
but also data obtained in the course of clinical and morphological examinations, allows us
to approach the issue of personalized chemotherapy prescription for patients with breast
cancer. Since there is still no gold standard, it is necessary to continue attempts to search
for new predictive markers and, possibly, pay attention to complex panels of markers of
various natures (genetic, epigenetic, proteomic, clinical, morphological).
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15051630/s1, Table S1: Sequences and specific modifications
of the sequencing adapters used in the XmaI-RRBS protocol. (M, Methylated cytosine). Unique
5 bp barcodes are highlighted in gray; Table S2: Genome regions selected for MSRE-qPCR positive
internal controls (PCs) and digestion efficacy controls (DCs); Table S3: Primers and TaqMan-probes
of 11 pools comprising candidate DNA methylation markers of BC NACT effectiveness. The G
(general) pools include markers that discriminate both TN and luminal B tumors in terms of response
to NACT; the TN (tri-ple-negative) pools include markers exclusive for TNBC and LB (luminal
B) pools for luminal B subtype; Table S4: Predictive value of individual epigenetic markers for
predicting sensitivity to NACT for triple-negative breast tumors, measured by MSRE-qPCR; Table S5:
Predictive value of individual epigenetic markers for predicting sensitivity to NACT for luminal B
breast tumors, measured by MSRE-qPCR; Table S6: Predictive value of top 10 panels of epigenetic
markers for predicting sensitivity to NACT of triple-negative breast tumors, measured by MSRE-
qPCR; Table S7: Predictive value of top 10 panels of epigenetic markers for predicting sensitivity to
NACT of luminal B breast tumors, measured by MSRE-qPCR; Table S8: Predictive value of top 10
combined panels of epigenetic and clinical/morphological markers for predicting NACT sensitivity of
triple-negative breast tumors; Table S9: Predictive value of top 10 combined panels of epigenetic and
clinical/morphological markers for predicting NACT sensitivity of luminal B breast tumors; Table
S10: List of differential methylated CpG-dinucleotides resulting XmaI-RRBS; Table S11: Quantitative
results of over-representation analysis for TN and luminal B BC (KEGG, GO:BP, GO:MF); Figure S1:
Correlations between clinical characteristics and the level of methylation of the selected markers in
triple-negative breast cancer; Figure S2: Correlations between clinical characteristics and the level
of methylation of the selected markers in luminal B breast cancer; Figure S3: Dot plot for top-10
over-represented gene ontology (GO) biological processes (BPs) terms in TN and Luminal B breast
cancer subtypes; Figure S4: Dot plot for top-10 over-represented gene ontology (GO) molecular
functions (MFs) terms in TN and Luminal B breast cancer subtypes; Figure S5: Dot plot for top-10
over-represented Kyoto Encyclopedia of Genes and Genomes (KEGG) terms in TN and Luminal B
breast cancer subtypes; Figure S6: ROC curves and cross-validated area under the curve (cvAUC)
for breast cancer NACT sensitivity classifiers for TN (A) and lum.B subtypes (B), validated using
discovery cohort RRBS data.
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