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Abstract: China is the largest carbon emitter in the world, with agricultural carbon emissions
accounting for 17% of China’s total carbon emissions. Agricultural carbon emission reduction
has become the key to achieving the “Double Carbon” goal. At the same time, the role of the
digital economy in achieving the “dual carbon” goal cannot be ignored as an important engine
to boost the high-quality development of China’s economy. Therefore, this paper uses the panel
data of 30 provinces in mainland China from 2011 to 2019 to construct a spatial Durbin model
and a mediation effect model to explore the impact of the digital economy on agricultural carbon
intensity and the mediating role of agricultural technological progress. The research results show
that: (1) China’s agricultural carbon intensity fluctuated and declined during the study period,
but the current agricultural carbon intensity is still at a high level; (2) The inhibitory effect of the
digital economy on agricultural carbon intensity is achieved by promoting agricultural technological
progress, and the intermediary role of agricultural technological progress has been verified; (3) The
digital economy can significantly reduce the carbon intensity of agriculture, and this inhibition has
a positive spatial spillover effect. According to the research conclusions, the government should
speed up the development of internet technology and digital inclusive finance, support agricultural
technology research and improve farmers’ human capital, and strengthen regional cooperation to
release the contribution of digital economy space.

Keywords: digital economy; agricultural carbon intensity; agricultural technological progress; spatial
Durbin model

1. Introduction

At the general debate of the 75th United Nations General Assembly in September
2020, China proposed a “Double Carbon” goal, saying that it would peak carbon dioxide
emissions by 2030 and achieve carbon neutrality by 2060 for the first time. As the world’s
second-largest economy and a tremendous contributor to the world economy, China has
also become a major carbon dioxide emitter [1–3]. China’s carbon emissions account for
30% of the world’s total carbon emissions [4,5]. However, China is still in the stage of
industrialization and urbanization, so energy consumption is rapidly increasing; this means
that China’s carbon dioxide emissions will continue to increase [6,7].

Agriculture is the second-largest source of carbon emissions in the world [8]. Accord-
ing to the IPCC (2014) report, agricultural greenhouse gas emissions account for about
22% of the global total if calculated by 20-year GWP, thus ranking first. If calculated by
100-year GWP, agriculture contributes 14% of global greenhouse gas emissions, second
only to industry and electricity and heat production. The total amount of carbon dioxide
produced in China’s agricultural production activities accounts for 17% of the country’s
total carbon dioxide emissions [2,9]. This puts enormous pressure on the environment [10].
Meanwhile, the deterioration of ecosystem quality caused by environmental pollution
may damage food production systems [11]. Therefore, it is urgent to promote agricultural
carbon emission reduction.
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A broad definition of the digital economy is “the use of ICT in all sectors of the
economy” [12]. Based on this, this paper defines the digital economy as an information
production factor that uses the Internet as a carrier for economic activities. At present, the
digital economy has become the engine of global economic growth and the most active
area of China’s economic development [13–15]. The “White Paper on China’s Digital
Economy Development” (http://www.caict.ac.cn/kxyj/qwfb/bps/202104/t20210423_
374626.htm, access date: 28 April 2022) released by the China Academy of Information
and Communications Technology in April 2021 shows that the scale of China’s digital
economy in 2020 was 39.2 trillion Yuan, an increase of 3.3 trillion Yuan over the preceding
year. The digital economy also accounted for 38.6% of Gross Domestic Product, and the
growth rate was more than three times that of GDP. The digital economy has become a
key driving force for China to stabilize economic growth following the negative impact of
COVID-19 and the economic downturn. At the same time, China’s economy has shifted
from a high-speed growth stage to a high-quality development stage. As an important
starting point for the coordinated development of the economy, environment, and society,
the digital economy has attracted widespread attention from scholars. Using panel data
of 269 prefecture-level cities in China from 2004 to 2019, Wang et al. found that internet
development can promote green economic growth [16]. Usman et al. studied the impact of
ICT on economic performance and energy consumption in South Asian economies, arguing
that ICT can improve energy efficiency and reduce carbon dioxide emissions [17]. Li, Liu,
and Ni [14] used a fixed-effects model to study the impact of the digital economy on carbon
dioxide emissions based on the panel data of 190 countries around the world from 2005 to
2016. They found an inverted “U”-shaped relationship between carbon dioxide emissions
and the digital economy.

In summary, the inhibitory effect of the digital economy on carbon emissions has
been affirmed, but less research has been done on how the digital economy affects the
carbon intensity of agriculture and the mechanism behind this effect under the China
scenario. Based on this, this paper uses the data of 30 provinces in mainland China from
2011 to 2019 to establish a spatial econometric model and a mediating effect model to
investigate the impact of the digital economy on agricultural carbon intensity and the
mediating role of agricultural technological progress. The inhibitory effect of the digital
economy on carbon intensity is still significant in the agricultural field. The progress of
agricultural technology is an important transmission mechanism, and this impact has
a positive spillover effect. These conclusions can provide a reference for the Chinese
government in achieving agricultural carbon emission reduction. This paper may have
the following two innovations: (1) Discussion of the impact of the digital economy on
agricultural carbon intensity, and expansion of the research and existing literature in this
regard, and (2) The digital economy, agricultural technological progress, and agricultural
carbon intensity are brought into the same research framework, and the path through
which the digital economy affects agricultural carbon intensity is examined. It supports the
conjecture that the progress of agricultural technology plays an intermediary role in the
effect of the digital economy on reducing the carbon intensity of agriculture and helps to
clarify the path of the effect of the digital economy on the carbon intensity of agriculture.

The rest of this paper is set up as follows: Section 2 briefly introduces the research
hypothesis. Section 3 measures China’s agricultural carbon intensity and explains the
estimation methods and data used in this paper. Section 4 presents the empirical results
and discussion. Section 5 provides conclusions and policy recommendations.

2. Theoretical Analysis and Research Assumptions

From the formula of agricultural carbon intensity, reducing agricultural carbon emis-
sions and developing the agricultural economy will reduce agricultural carbon intensity.
The effect of the digital economy on agricultural carbon intensity can be achieved by af-
fecting agricultural carbon emissions and agricultural economic development, as shown in
Figure 1.

http://www.caict.ac.cn/kxyj/qwfb/bps/202104/t20210423_374626.htm
http://www.caict.ac.cn/kxyj/qwfb/bps/202104/t20210423_374626.htm
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2.1. Digital Economy and Agricultural Carbon Intensity

The digital economy can promote the development of the agricultural economy and
reduce the carbon intensity of agriculture. Some scholars state that the development
of the internet and inclusive finance can increase farmers’ incomes and promote agri-
cultural economic growth [18–20], which will lead to an increase in agricultural carbon
emissions [10,21,22]. From the formula of agricultural carbon intensity, agricultural eco-
nomic development can, on the one hand, reduce agricultural carbon intensity, and on the
other hand, will promote agricultural carbon emissions and increase agricultural carbon
intensity. Therefore, the impact of the digital economy on agricultural carbon intensity
by promoting agricultural economic growth will result in both “increase” and “decrease”
effects. Therefore, what kind of results will China’s digital economy achieve by promoting
the development of the agricultural economy to affect the carbon intensity of agriculture?
This paper argues that China’s digital economy will reduce agricultural carbon intensity
by promoting agricultural economic development. Because Chinese leaders pay more
attention to green development, a strict environmental protection system and official evalu-
ation methods, including ecological indicators, will force local governments to give up the
GDP-based development method used exclusively in the past. They will have to consider
how to realize the coordinated development of the economy and environment [23]. There-
fore, the role of agricultural economic development in promoting carbon emissions will
gradually fail.

The digital economy can promote the advancement of agricultural technology through
information transfer and relaxation of loan restrictions. First, the digital economy provides
farmers with an information exchange platform and reduces the marginal cost of their
interaction. Through the internet, mobile phones, and other media, farmers can obtain the
technical information needed for production activities, and then share the information with
other farmers [24]. Secondly, the learning and utilization of new technologies and the trans-
formation of technological achievements are inseparable from financial support [25]. Digital
inclusive finance based on the development of information technology has effectively low-
ered the threshold of financial services and broadened the scope of financial services. It
can also provide financial support for farmers to implement agricultural technology by
reducing credit restrictions [26], while promoting the application of new technologies in
agricultural production.

At the same time, the progress of agricultural technology can effectively reduce
agricultural carbon emissions [10,27]. First, the progress of agricultural technology can
improve the utilization efficiency of agricultural production factors [10,28], obtain a given
output with less input, and reduce agricultural carbon emissions caused by the expansion
of the agricultural production scale. Second, the progress of agricultural technology can
improve the effectiveness of agricultural pollution control. After production factors such
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as pesticides, fertilizers, and agricultural films are used, harmful substances will remain
in the land [29], and these harmful substances will be reduced to carbonitrides and cause
greenhouse gas emissions. Technological progress in agricultural pollution control can
reduce harmful substances caused by agricultural production factors [28], and reduce
agricultural carbon emissions. Therefore, the progress of agricultural technology can play a
role in two stages—before and after agricultural carbon emissions, and effectively reduce
agricultural carbon emissions. Based on this, we propose Hypothesis 1 and Hypothesis 2:

Hypothesis 1. The digital economy has an inhibitory effect on agricultural carbon intensity.

Hypothesis 2. Digital economy can reduce agricultural carbon intensity by boosting agricultural technology.

2.2. The Impact of the Digital Economy on Agricultural Carbon Intensity Has Spatial
Spillover Effects

Yilmaz, et al. [30] were among the first to pay attention to the spatial spillover effect
of the digital economy, using the panel data of 48 states in the United States from 1970 to
1997 to test the spatial spillover effect of state-level telecommunications infrastructure
investment on national output. After that, Zhou et al. [31], Wu et al. [32], and Su et al. [33]
found that the impact of digital finance and the Internet on green development and eco-
logical efficiency has a spatial spillover effect. He et al. [34] used data from 31 provinces
in China from 2007 to 2017 to determine that agricultural greenhouse gases are spatially
autocorrelated, and agricultural technological progress has a spatial spillover effect on the
reduction of greenhouse gas emissions. Due to the mobility of greenhouse gases such as
carbon dioxide and the geographical connection of each region [35], agricultural carbon
emissions in a region will affect adjacent regions. Thus, agricultural carbon intensity has
spatial autocorrelation. Local experience and achievements in digital economy develop-
ment can flow into surrounding areas through regional cooperation, improving the level
of the digital economy in adjacent areas. On the one hand, it can, in this way, improve
agricultural production efficiency in adjacent areas, promote agricultural economic growth,
and reduce agricultural carbon intensity. On the other hand, it can promote the diffusion
of agricultural technology between regions, improve the level of agricultural technology
in adjacent regions, and reduce agricultural carbon intensity. Based on this, we propose
Hypothesis 3:

Hypothesis 3. The digital economy can affect agricultural carbon intensity in adjacent areas
through spatial spillover effects.

3. Research Design
3.1. Calculation of Agricultural Carbon Emissions and Agricultural Carbon Intensity
3.1.1. Calculation of Agricultural Carbon Emissions

This paper takes agriculture as the research object in a narrow sense (planting indus-
try). According to previous research, the carbon sources of the planting industry mainly
include fertilizer, pesticide, agricultural film, irrigation, ploughing, machinery, and diesel
oil [22,36–38]. Therefore, the agricultural carbon emissions measured in this paper in-
clude these seven aspects. Drawing on the method of Huang, Xu, Wang, Zhang, Gao
and Chen [36–38], the following formula for calculating agricultural carbon emissions is
constructed:

E =∑ n
i=1 Ei = ∑ n

i=1 Ci×δi (1)

where n is the number of agricultural input elements (carbon sources); E is the total amount
of agricultural carbon emissions, which is equal to the sum of carbon emissions from
various carbon sources; Ei is the carbon emissions of the i-th agricultural input element,
including fertilizers, pesticide, agricultural film, irrigation, farming, machinery, diesel
oil; Ci is the amount of the i-th agricultural input element; and δi is the carbon emission
coefficient of the i-th agricultural input element (Table 1).
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Table 1. Carbon emissions coefficient.

Input Elements Carbon Emission Coefficient Reference Sources

Fertilizer 0.8956 kg C/kg [36]
Pesticide 4.9341 kg C/kg [36]

Agricultural film 5.18 kg C/kg College of Resources and Environmental Sciences,
Nanjing Agricultural University

Irrigation 266.48 kg C/hm2 [22]
Ploughing 16.47 kg C/hm2 [34]
Machinery 0.18 kg C/kW [34]
Diesel oil 0.5927 kg C/kg [22,39]

Note: kg C represents the mass of the carbon molecule.

3.1.2. Calculation of Agricultural Carbon Intensity

This paper draws on the method of Zhou, et al. [40] to construct the following formula
for calculating agricultural carbon intensity:

ACI = E/AV (2)

where ACI is the agricultural carbon intensity, E is the agricultural carbon emissions
calculated by Equation (1), and AV is the added value of the primary industry.

3.2. Benchmark Regression Model
3.2.1. Basic Model

To verify H1, the following panel regression model is established:

ACIit = ∂0 + ∂1DIGit + ∂2LnURit + ∂3LnERit + ∂4LnSTRUit + ∂5LnRTIit + ∂6LnAFFIit + ∂7LnAFEitµi+λt+εit (3)

where ACIit is the agricultural carbon intensity of city i in year t, with i = 1, 2, . . . , 30;
t = 2011, 2012, . . . , 2019; ∂0 is the intercept; ∂n (n = 1, 2, . . . , 6, 7) are the coefficients of the
variables; DIGit is the digital economy of city i in year t; LnURit is the urbanization rate
of city i in year t; LnERit is the environmental regulation of city i in year t; LnSTRUit is
the industrial structure of city i in year t; LnRTIit is the road traffic infrastructure of city i
in year t; LnAFFIit is the disaster rate of city i in year t; LnAFEit is the agricultural fiscal
expenditure of city i in year t; µi is the individual fixed effects; λt is the time fixed effects;
and εit is the random disturbance term.

3.2.2. Mediation Effect Model

To identify the possible mechanism of action of the digital economy on agricultural
carbon intensity, and to test whether agricultural technological progress is an intermediary
variable between the two, the following intermediary model was established based on the
experience of Wang, et al. [41]. First, on the premise that the coefficient ∂1 in Equation (3)
is significant, the regression Equation (4) of the digital economy and agricultural carbon
intensity is established. Then, the regression Equation (5) of the digital economy, agri-
cultural technological progress, and agricultural carbon intensity is established, and the
existence of the mediating effect is judged according to the magnitude and significance of
the coefficients ρ1, ϕ1 and ϕ2:

TEit= ρ0+ρ1DIGit+ρ2LnURit+ρ3LnERit+ρ4LnSTRUit+ρ5LnRTIit+ρ6LnAFFIit+ρ7LnAFEitµi+λt+εit (4)

ACIit= ϕ0+ϕ1DIGit+ϕ2TEit+ϕ3URit+ϕ4ERit+ϕ5STRUit+ϕ6RTIit+ϕ7AFFIit+ϕ8LnAFEit+µi+λt+εit (5)

where TEit is the intermediary variable agricultural technology progress of city i in year t,
and other variables and symbols are consistent with Formula (3).
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3.3. Spatial Autocorrelation Calculation of Agricultural Carbon Intensity
3.3.1. Global Moran’s I

It is necessary to test whether the research object has spatial effects before the analysis.
Global Moran’s I is a derivation of Moran’s I with a value range of [−1, 1]. When the global
Moran’s I is greater than 0, the data is positively correlated in space, and the closer it is
to 1, the stronger the positive correlation. A global Moran’s I less than 0 means that the
data is negatively correlated in space, and the closer it is to −1, the stronger the negative
correlation. When the global Moran’s I is equal to 0, the data has no spatial autocorrelation.
The formula for the global Moran’s I is as follows

I =
n

∑n
i=1 ∑n

j=1 Wij
×

∑n
i=1 ∑n

j=1 Wij
(
ACIi −ACI

)(
ACIj −ACI

)
∑n

i=1
(
ACIi − ACI

)2 (6)

where I is the global Moran’s I; n is the number of observations; Wij is the geographic
distance weight matrix; ACIi and ACIj are the agricultural carbon intensity in regions i and
j; and ACI is the mean of all observations of ACI.

3.3.2. Local Moran’s I

To analyze the scope and location of agricultural carbon intensity in spatial agglomer-
ation, this paper uses the local Moran’s I to reflect the spatial autocorrelation of agricultural
carbon intensity. The formula is as follows:

Ii =
n
(
ACIi − ACI

)
∑n

i=1
(
ACIi − ACI

)2 ∑n
i=1, j 6=i Wij

(
ACIj − ACI

)
(7)

where Ii is the local Moran’s I; and the definitions of n, Wij, ACIi, ACIj, and ACI are the
same as those of Formula (6). When Ii is greater than 0, the agricultural carbon intensity in
the i region is similar to the adjacent areas. When Ii is less than 0, the agricultural carbon
intensity in the i region is significantly different from the adjacent areas.

3.4. Spatial Durbin Model
To verify H3, the following spatial SDM model is constructed:

ACIit= β0+β1DIGit+β2TEit+β3LnURit+β4LnERit+β5LnSTRUit+β6LnRTIit+β7LnAFFIit+β8LnAFEit+ρWACIit+ϕ1
WDIGit +ϕ2WTEit+ϕ3WLnURit+ϕ4WLnERit+ϕ5WLnSTRUit+ϕ6WLnRTIit+ϕ7WLnAFFIit+ϕ8WLnAFEit+µi+λt+εit

(8)

where β0 is the intercept; βn(n = 1, 2, . . . , 7, 8) are the coefficients of the variables; ρ is the spatial
autoregressive coefficient of the dependent variable; W is the geographic distance weight matrix;
ϕn(n = 1, 2, . . . , 7, 8) are the spatial spillover coefficients of the digital economy and control variables;
and other variables and symbols are the same as Formula (3).

3.5. Variable Selection and Data Sources
3.5.1. Core Explanatory Variable

According to research by Bukht and Heeks [12] and Du and Guan [42], this paper defines
the digital economy as the information production factors that use the Internet as a carrier of
economic activities. Referring to the methods of Huang et al. [43] and Zhao, Zhang, and Liang [13], a
comprehensive index of the digital economy, including the Internet and digital financial inclusion,
is constructed. First, the index score is calculated using the entropy value method, and then the
standardized index value is multiplied by the score to obtain the comprehensive index of the digital
economy. The specific indicators and scores are shown in Table 2. The level of Internet development
from the two aspects of use and output are measured, and four indicators, i.e., internet penetration
rate, internet-related employees, internet-related output, and the number of mobile internet users,
are selected. The internet penetration rate is represented by the number of internet users per 100
people; the internet-related employees are represented by the proportion of employees in computer
service and software industries in the unit employees; the internet-related output is represented
by the total number of telecommunication services per capita; and the number of mobile internet
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users is represented by mobile phone users per 100 people. The Digital Finance Research Center of
Peking University uses the micro data of Ant Financial, a representative Internet financial institution
in China, on digital inclusive finance, and constructs the digital inclusive financial index from three
aspects: depth of use, breadth of coverage, and digital support services [44]. This paper uses this
index to characterize the level of digital financial development, thus reflecting the reachability and
service scope of inclusive finance in China’s provinces.

Table 2. Digital economy comprehensive index system.

Subsystem Indicators Definition Unit of Measurement Weights

Internet

Internet penetration rate Number of internet users per 100 people - 0.220

Internet-related employees
Proportion of employees in computer
service and software industries in the

unit employees
% 0.176

Internet-related output Total number of telecommunication services
per capita CNY 0.151

The number of mobile
internet users Mobile phone users per 100 people - 0.226

Digital
finance

The digital inclusive
financial index The digital inclusive financial index - 0.227

3.5.2. Mediating Variable
The progress of agricultural technology is represented by the number of patents authorized in the

agricultural field per capita in the primary industry. The calculation of the number of patents granted
in the agricultural field draws on the method of Liu, Ji, Zhang, An, and Sun [26], and is represented
by the sum of the number of invention patents and utility model patents in the agricultural field
obtained from the CNKI (China National Knowledge Infrastructure: https://www.cnki.net/, access
date: 28 April 2022) patent database.

3.5.3. Control Variables
In the research on the influencing factors of agricultural carbon emissions, the selection of

control variables mainly involves four aspects: (1) the level of agricultural economy [21]; (2) industrial
structure [45]; (3) population structure and agricultural disaster situation [46]; and (4) agricultural
financial support [47]. In addition, some scholars state that transportation and the environment
also have an impact on carbon emissions [48–50]. Drawing on past research and combining data
availability, this paper selects urbanization, industrial structure, agricultural disaster rate, agricultural
fiscal expenditure, road traffic infrastructure, and environmental regulation as control variables. The
urbanization level is characterized by the ratio of the urban population to the total population [51];
the industrial structure is characterized by the ratio of the added value of non-agricultural industries
to GDP [27]; the agricultural disaster rate is characterized by the ratio of the affected agricultural
area to the total sown area [52]; the agricultural fiscal expenditure is characterized by the ratio of
expenditure on agriculture, forestry, and water affairs to the total expenditure of government fiscal
final accounts [47]; the transportation infrastructure is characterized by road miles [53]; and the
environmental regulation is characterized by the ratio of the investment in environmental pollution
control to GDP [54].

The meanings, symbols, and units of these variables are shown in Table 3.

3.5.4. Data Sources
This paper takes 30 provinces in inland China (excluding Tibet) as the research object, and the

time range is 2011 to 2019.
Digital financial inclusion data is from Guo et al. [44]. The data on internet indicators, industrial

structure, added value of the primary industry, number of employed persons in the primary industry,
expenditure on agriculture, forestry and water affairs, and road mileage are from China Statistical
Yearbook. The data on environmental regulation is from China Environmental Statistical Yearbook.
The data on the affected area of land, the total sown area, and the seven agricultural input factors are
from the China Rural Statistical Yearbook. The data on urbanization is from the China Regional Statis-
tical Yearbook. The missing values are filled with the average growth rate. To avoid heteroscedasticity,
some indicators are processed by logarithm. To mitigate the impact of inflation, some indicators are

https://www.cnki.net/
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deflated with 2011 as the base year and adjusted to constant prices. The descriptive statistics of the
variables are shown in Table 4.

Table 3. Definition of all relevant variables used in the paper.

Symbol Variable Definition Unit of Measurement

Explained variable

ACI Agricultural carbon intensity Total agricultural carbon emissions/Value-added of
primary industry Ton/ten thousand Yuan

Explanatory variable

DIG Digital economy Digital economy index -

Mediating variable

TE Agricultural technological progress
Total number of invention patents and utility model

patents in agriculture per year/Employees in the
primary industry

items/10 thousand people

Control variable

UR Urbanization rate Urban population/Total population %

ER Environmental regulation Environmental pollution control investment/GDP %

STRU Industrial structure Value-added of non-agricultural industrial/GDP %

RTI Road traffic infrastructure Road and rail mileage per unit area in each province 10 thousand kilometers

AFFI Agricultural disaster rate Land affected area/Total sown area %

AFE Agricultural fiscal expenditure
Fiscal expenditure on agriculture, forestry and water

affairs/Total expenditure on government fiscal
final accounts

%

Table 4. Descriptive statistics for the variables.

Variables N Mean Std. Deviation Min Max

ACI 270 0.223 0.084 0.101 0.508
DIG 270 0.296 0.161 0.020 0.815
TE 270 6.161 11.766 0.139 76.386
UR 270 57.636 12.178 35.000 89.600

STRU 270 90.255 5.132 73.800 99.700
ER 270 1.472 0. 796 0.300 4.841
RTI 270 14.942 7.865 1.208 33.709

AFFI 270 15.403 0.796 0.300 4.841
AFE 270 11.397 3.189 4.110 18.966

4. Empirical Results and Analysis
4.1. Status Quo Analysis of Agricultural Carbon Intensity, Digital Economy and Agricultural
Technology Progress

This paper plots the temporal evolution of agricultural carbon intensity, the digital economy, and
agricultural technological progress from 2011 to 2019 at the national level. In Figure 2, the left y-axis
in the range of [0.000, 12.000] is the vertical axis of the digital economy and agricultural technology
progress. The right y-axis in the range of [0.200, 0.235] is the vertical axis of the agricultural carbon
intensity and the proportion of crop production value, while the horizontal axis represents the year.

The fluctuating decline of China’s agricultural carbon intensity from 2011 to 2019 shows that
China’s past efforts to reduce agricultural carbon emissions have paid off. However, China’s agricul-
ture still faces huge challenges. Large-scale agricultural production still leads to a high amount of
agricultural carbon intensity. Ensuring food security while considering the environment is the most
important challenge that China must overcome at present [55].
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Figure 2. Time evolution diagram of China’s agricultural carbon emissions, digital economy, agricul-
tural technology progress, and the proportion of crop production value.

China’s agricultural technology progress shows an overall increasing trend from 2011 to 2019.
The number of agricultural patents per capita in the primary industry increased from 2.43 to 9.75,
an increase of 301.18%, indicating that China’s agricultural technology research and development
made great progress. However, China’s current level of agricultural technology is relatively low,
and agricultural technology presents the characteristics of “high energy consumption and high
emissions” [56], so it cannot greatly reduce agricultural carbon intensity. In the future, it will be
necessary to further increase investment in technology research and development in the agricultural
field and focus on agricultural technology with the characteristics of “improving efficiency and
controlling pollution” to promote carbon emission reduction in agriculture.

The digital economy continued to improve from 2011 to 2019, indicating that the promotion
of digital China has achieved results. The growth rate of the digital economy increased even more
after China released “The Thirteen Five-Year Plan for National Economic and Social Development
of the People’s Republic of China” in March 2016. It officially proposed to combine information
technology and economic and social development to promote the development of the digital economy,
providing a strong policy guarantee for the rapid development of the digital economy. Among
them, the digital economy level in the eastern region is the highest, while that of the western
region is the lowest. According to the “China Regional and Urban Digital Economy Development
Report (2020)” released by the China Academy of Information and Communications Technology
(http://www.caict.ac.cn/kxyj/qwfb/ztbg/202101/t20210104_367593.htm, access date: 28 April
2022), the eastern region accounted for eight out of the top 15 provinces in China’s digital economy
competitiveness in 2019, with Guangdong, Beijing, and Shanghai ranking among the top three.
Meanwhile, the central region accounted for four, and the western region accounted for only three.
As the frontier of China’s reform and innovation, the eastern region had the opportunity to develop
the digital economy earlier and had more technology and funds to support the development of the
digital economy, eventually becoming the leading region in China’s digital economy.

The proportion of China’s planting industry output value to the total output value of agriculture,
forestry, animal husbandry, and fishery fluctuated slightly from 2011 to 2019 but has remained at
a high level of 52%. The stable development of the planting industry is of great significance to
improving people’s living standards and ensuring national food security.

The Chinese government has divided its regions into the main grain producing area, the main
grain sales area, and the production and sales balance area (see Table A2 of Appendix A for details).
Among them, the main sales areas are concentrated in the east, and their average self-sufficiency
rate for food is less than 30% (Data source: Du Ying: “China’s Food Security Strategy (Part 2)”,
“China Rural News Agency”, No. 22, 2020.). Their contribution to national agriculture is very
small, indicating a negative correlation between the digital economy and the development level

http://www.caict.ac.cn/kxyj/qwfb/ztbg/202101/t20210104_367593.htm
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of the planting industry. While undertaking the important task of ensuring national food security,
the main grain-producing areas also face various natural, market and policy risks, creating the
dilemma of “the provinces with large grains are often economically weak and financially poor” [57].
According to the research of the “White Paper on China’s Digital Economy Development” (http://
www.caict.ac.cn/kxyj/qwfb/bps/202104/t20210423_374626.htm, access date: 28 April 2022), China’s
digital economy has a strong positive correlation with the level of national economic development,
and the limited regional economic development has further led to a low level of regional digital
economy development.

4.2. Benchmark Regression and Mediation Effect Results Analysis
Columns (1) and (2) of Table 5 report the results of the panel benchmark regression. Whether

the control variable is added or not, the digital economy can significantly reduce agricultural carbon
intensity, and H1 is verified. After adding the control variables, the coefficient of the digital economy
is −0.250, indicating that increasing the digital economy by one unit can reduce the agricultural
carbon intensity by 0.250 units. The industrial structure, agricultural disaster rate, and agricultural
fiscal expenditure will significantly increase the carbon intensity of agriculture. The industrial
structure can significantly increase the carbon intensity of agriculture because the proportion of
non-agricultural industries in GDP increases, and then more resources will be tilted towards non-
agricultural industries, thus increasing the carbon intensity of agriculture. According to the research
of He et al. [58], land damage will affect the final output, but the input of production factors in the
early stage will not reduce agricultural carbon emissions, which will lead to an increase in agricultural
carbon intensity. Agricultural fiscal expenditure will expand the scale of agricultural production,
which is consistent with the research of Wang and Li [59]. This may be because agricultural fiscal
expenditures have increased the input of production factors such as fertilizers and pesticides, thus
increasing agricultural carbon intensity. The remaining control variables have no significant effect on
agricultural carbon intensity.

Table 5. Benchmark regression and mechanism test results of digital economy influencing agricultural
carbon intensity.

ACI TE ACI

(1) (2) (3) (4)

DIG −0.243 *** −0.250 *** 43.495 *** −0.134 **
TE −0.003 ***

LnUR 0.061 −77.244 *** −0.146 ***
LnER 0.005 0.834 0.007

LnSTRI 0.618 *** 6.479 0.636 ***
LnRTI 0.001 −24.389 *** −0.064 **

LnAFFI 0.003 ** −0.437 ** 0.002 **
LnAFE 0.047 *** −3.204 0.039 ***
_cons 0.257 *** −2.885 *** 339.734 *** −1.975 **

Year fixed YES YES YES YES
Province fixed YES YES YES YES
Observations 270 270 270 270

R2 0.153 0.304 0.584 0.445
Note: ** and *** indicate that the estimated coefficients passed the Z-test at the 5% and 1% levels of significance,
respectively.

Columns (3) and (4) of Table 5 report the results of the mediation test. Under the premise that
the digital economy coefficient in column (2) is significantly negative, the results in column (3) show
that the digital economy can significantly promote the progress of agricultural technology. The
results in column (3) show that the digital economy can significantly promote technological progress
in agriculture, and the results in column (4) show that technological progress in agriculture can
significantly reduce agricultural carbon intensity. Compared with column (2), the coefficient of the
digital economy in column (4) is smaller, indicating that the digital economy’s inhibitory effect on the
carbon intensity of agriculture is partly achieved through the advancement of agricultural technology.
H2 is verified.

http://www.caict.ac.cn/kxyj/qwfb/bps/202104/t20210423_374626.htm
http://www.caict.ac.cn/kxyj/qwfb/bps/202104/t20210423_374626.htm
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4.3. Spatial Autocorrelation Results of Agricultural Carbon Intensity
4.3.1. Global Moran’s I Analysis

Based on the geographic distance weight matrix, this paper measures the global Moran index of
agricultural carbon intensity from 2011 to 2019. Table 6 shows the global Moran index of agricultural
carbon intensity from 2011 to 2019 to be greater than 0. Also, there are several years of agricultural
carbon intensity with significant positive autocorrelation in space, which may be because agricultural
production is greatly affected by natural conditions. Adjacent regions have similar production
conditions and production methods, resulting in similar agricultural carbon intensities. Therefore,
a spatial model can be introduced when exploring the impact of the digital economy on China’s
agricultural carbon intensity [60].

Table 6. Global Moran’s I of agricultural carbon intensity in China from 2011 to 2019.

Year Moran’s Index Z-Statistics p-Value Year Moran’s Index Z-Statistics p-Value

2011 0.041 0.792 0.214 2016 0.088 1.299 0.097
2012 0.051 0.894 0.186 2017 0.092 1.340 0.090
2013 0.007 0.431 0.333 2018 0.086 1.281 0.100
2014 0.022 0.603 0.273 2019 0.095 1.402 0.080
2015 0.054 0.947 0.172

4.3.2. Local Moran’s I Analysis
Figure 3 presents a partial Moran scatter plot of agricultural carbon intensity in 2011, 2013, 2016,

and 2019. The letters in the plot are the abbreviations of the names of the provinces in China (see
Table A1 of Appendix A for details). The abscissa of Moran’s scatter plot represents the normalized
agricultural carbon intensity, and the ordinate is the spatial lag term of agricultural carbon intensity.
Among the four areas divided by the two coordinate axes, the upper right area is the first quadrant,
the upper left area is the second quadrant, the lower left area is the third quadrant, and the lower right
area is the fourth quadrant. The first quadrant represents high–high (HH) aggregation, representing
provinces with high agricultural carbon intensity with corresponding high agricultural carbon
intensity in their surrounding provinces. The second quadrant represents low–high (LH) aggregation,
representing provinces with low agricultural carbon intensity that have high agricultural carbon
intensity in their surrounding provinces. The third quadrant represents low–low (LL) aggregation,
representing provinces with low agricultural carbon intensity with corresponding low agricultural
carbon intensity in their surrounding provinces. The fourth quadrant represents high–low (HL)
aggregation, representing provinces with high agricultural carbon intensity that have low agricultural
carbon intensity in their surrounding provinces. Figure 3 shows that while the positions of individual
cities on the Moran scatter diagram have changed, there are more provinces in the first and third
quadrants than in the second and fourth quadrants, confirming the previous conclusion that China’s
agricultural carbon intensity has a positive spatial autocorrelation.

4.4. Analysis of Spatial Spillover Effects
4.4.1. Choice of Spatial Model

According to Elhorst [61], several tests need to be carried out to select the most suitable spatial
econometric model before performing spatial econometric regression. Based on the geographic
distance weight matrix, LM, Wald, LR, Hausman, and fixed effects tests were performed, and the
results are shown in Table 7. The test results of LM-LAG, LM-ERR, Robust LM-LAG, and Robust
LM-ERR passed the significance test, indicating that a spatial econometric model should be used.
Secondly, the test results of Wald-SAR, Wald-SEM, LR-SAR, and LR-SEM also passed the significance
test, rejecting the null hypothesis that the SDM model can be degenerated into a SAR model or a SEM
model, and indicating that the SDM model should be introduced. Finally, the Hausman test results
show that the fixed effects model is better than the random effects model, indicating that the fixed
effects SDM model should be established based on the geographic distance weight matrix.
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Figure 3. Moran scatter plots of agricultural carbon intensity in China for 2011, 2013, 2016, and 2019.

Table 7. LM test, Wald test, Hausman test, and LR test results.

Variable
W

Chi2-Statistic

LM-LAG 193.282 ***
Robust LM-LAG 16.870 ***

LM-ERR 179.655 ***
Robust LM-ERR 3.242 *

Wald-SAR 53.110 ***
Wald-SEM 41.190 ***

LR-SAR 47.870 ***
LR-SEM 39.620 ***

Hausman 12.390 *
Note: * and *** indicate that the estimated coefficients passed the Z-test at the 10% and 1% levels of
significance, respectively.

4.4.2. Analysis of SDM Regression Results
According to the choice of the spatial econometric model, a fixed effects SDM model based on

the spatial geographic distance weight matrix is established for regression. The results in Table 8
show that the digital economy has a significant inhibitory effect on the local agricultural carbon
intensity. It also shows that the industrial structure, agricultural disaster rate, and agricultural
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financial expenditure significantly affect the local agricultural carbon intensity. The digital economy
and industrial structure have a significant inhibitory effect on the agricultural carbon intensity
of adjacent areas, while the agricultural disaster rate and agricultural fiscal expenditure have a
significant effect on the agricultural carbon intensity of adjacent areas. As direct analysis of SDM
estimates may lead to incorrect conclusions [62], this paper next discusses the direct and indirect
effects of independent variables.

Table 8. Spatial Durbin Model estimation and test results.

Variable SDM Variable SDM

DIG −0.174 *** W * LnUR 0.117
LnUR 0.004 W * LnER 0.007
LnER 0.006 W * LnSTUR −1.167 ***

LnSTUR 0.840 *** W * LnRTI 0.140
LnRTI −0.011 W * LnAFFI 0.004 **

LnAFFI 0.003 *** W * LnAFE 0.100 ***
LnAFE 0.030 ** ρ 0.363 ***

W * DIG −0.329 ** Log-likelihood 736.460
Note: ** and *** indicate that the estimated coefficients passed the Z-test at the 5% and 1% levels of
significance, respectively.

4.4.3. Analysis of Direct and Indirect Effects
Table 9 presents the effect of independent variables on agricultural carbon intensity. Direct effect

refers to the influence of the independent variable on its own agricultural carbon intensity, while
the indirect effect of the independent variable is its influence on the agricultural carbon intensity of
adjacent areas. The sum of the two is the total effect.

Table 9. Direct effect, indirect effect, and total effect of factors affecting agricultural carbon intensity.

Variable Direct Effect Indirect Effect Total Effect

DIG −0.200 *** −0. 596 *** −0.796 ***
LnUR 0.011 0.188 0.199
LnER 0.007 0.015 0.022

LnSTUR 0.777 *** −1.319 *** −0.542
LnRTI −0.001 0.205 0.203

LnAFFI 0.003 *** 0.008 *** 0.011 ***
LnAFE 0.037 *** 0.168 *** 0.205 ***

Note: *** indicate that the estimated coefficients passed the Z-test at the 1% levels of significance.

From the regression results in Table 9, the direct effect of the digital economy on agricultural
carbon intensity is −0.200, which is significant at the 1% level. For each unit of increase in the digital
economy, agricultural carbon intensity will decrease by 0.2%. The direct effect coefficient of industrial
structure on agricultural carbon intensity is 0.777, which is significant at the 1% level. For each unit
of industrial structure increase, agricultural carbon intensity will increase by 0.777%. The added
value of non-agricultural industries accounts for an increase in the proportion of GDP, and more
labor is transferred from agriculture to non-agricultural industries. The reduction of agricultural
labor is not conducive to the use of intensive farming in agriculture, resulting in a decline in land
productivity [63] and an increase in agricultural carbon intensity. The direct effect coefficient of
agricultural disaster rate on agricultural carbon intensity is 0.003, and it is significant at the 1% level.
For each unit of agricultural disaster rate increase, agricultural carbon intensity will increase by
0.003%. According to the research of He et al. [58], land damage will affect the final output, but the
input of production factors in the early stage will not reduce agricultural carbon emissions, which
will lead to an increase in agricultural carbon intensity. The direct effect coefficient of agricultural
fiscal expenditure on agricultural carbon intensity is 0.037, and it is significant at the 1% level. For
each unit of increase in agricultural disaster rate, agricultural carbon intensity will increase by 0.037%.
The increase in agricultural financial expenditure will expand the scale of agricultural production,
which is consistent with the research of Wang and Li [59]. This may be because agricultural fiscal
expenditures have increased the input of production factors such as fertilizers and pesticides, thus
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increasing agricultural carbon intensity. The direct effects of other variables on agricultural carbon
intensity were not significant.

From the perspective of indirect effects, the digital economy has a significant inhibitory effect
on the agricultural carbon intensity of adjacent areas. For each unit of increase in the digital economy,
the agricultural carbon intensity of adjacent areas will decrease by 0.596%. Zhou, Lan, Zhao, and
Zhou [31] state that the positive spillover effect of the digital economy will promote the development
of the digital economy in adjacent regions. As mentioned above, the digital economy can promote
the dissemination of information between regions. The information here naturally also includes the
development experience of the digital economy. When these experiences flow into adjacent areas,
they can play a positive demonstration role, thereby reducing the agricultural carbon intensity of
adjacent areas. The agricultural disaster rate has a significant role in promoting the agricultural
carbon intensity of adjacent areas. For each unit of increase in the agricultural disaster rate, the
agricultural carbon intensity of adjacent areas will increase by 0.008%. The ability of agriculture to
resist natural disasters is very limited, and agricultural production is greatly affected by the natural
environment. Geographically adjacent areas suffer from roughly the same natural disasters, so when
a province’s agricultural disaster rate increases, the adjacent areas’ rates will also increase, thereby
increasing agricultural carbon intensity. Agricultural fiscal expenditure has a significant role in
promoting the agricultural carbon intensity of adjacent areas. For each unit of increase in agricultural
fiscal expenditure, the agricultural carbon intensity of adjacent areas will increase by 0.168%. The
competitive incentive mechanism among officials may make officials in adjacent regions imitate each
other, so there will be a positive spatial spillover effect of agricultural financial support policies,
leading to an increase in agricultural carbon intensity in adjacent regions. The indirect effects of other
variables on agricultural carbon intensity were not significant.

In terms of total effect, the digital economy has a significant inhibitory effect on agricultural
carbon intensity, the agricultural disaster rate and agricultural fiscal expenditure have a significant
promoting effect on agricultural carbon intensity, and the total effect of other variables on agricultural
carbon intensity is not significant.

5. Conclusions
Using the data of 30 provinces in mainland China from 2011 to 2019, this paper constructs a

spatial Durbin model and a mediation effect model, and empirically examines the impact of the
digital economy on agricultural carbon intensity. This paper also innovatively introduces agricultural
technology progress to explore its mediating role in this effect. This paper aimed to find out how the
digital economy affects the carbon intensity of agriculture in the China context and determine the
mechanism behind this effect, in a bid to use the research conclusions to provide some reference for
the Chinese government to reduce carbon emissions in agriculture. The research conclusions are as
follows:

(1) China’s agricultural carbon intensity fluctuated and decreased from 2011 to 2019, and there has
been agricultural carbon emission reduction. However, due to the large scale of production, the
current agricultural carbon intensity is still very high. The digital economy has grown steadily
year by year. The progress of agricultural technology is also on the rise, but the characteristic
of “high energy consumption and high emissions” still exists, and the inhibitory effect on
agricultural carbon intensity needs to be improved.

(2) The improvement of China’s digital economy will significantly reduce the carbon intensity of
agriculture, and the advancement of agricultural technology has played an intermediary role in
this impact.

(3) The improvement of China’s digital economy can significantly reduce the carbon intensity of
agriculture in adjacent regions through spatial spillover effects.

6. Recommendations
Based on the above conclusions, the following policy recommendations are put forward:

(1) Based on the fact that the digital economy can effectively reduce the carbon intensity of agricul-
ture, the government should increase investment in the internet industry and accelerate the
implementation of 5G, artificial intelligence, and other internet technologies. The government
should also accelerate the integration of digital economy and agriculture to build a data plat-
form for agricultural production and promote the development of rural digital economy. At
the same time, it is necessary to further develop digital inclusive finance, use the advantages
of digital service channels, big data, cloud computing, and other technological methods to
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meet farmers’ financial needs, stimulate farmers’ innovation and entrepreneurship, and achieve
high-quality agricultural development.

(2) The inhibitory effect of the digital economy on agricultural carbon intensity has a positive spatial
spillover effect. The governments of neighboring provinces should break down administrative
barriers, coordinate and cooperate with each other on internet infrastructure construction,
agricultural technology innovation and application, and fully release the spatial contribution
capacity of the digital economy to agricultural carbon reduction.

(3) The digital economy reduces the carbon intensity of agriculture by improving technological
progress. Therefore, it is necessary to further increase investment in technological research and
development in the agricultural field in the future, and focus on agricultural technologies with
the characteristics of “improving productivity and controlling pollution,” thereby improving
the carbon emission reduction capacity of agricultural technological progress. Second, an
important premise for this mechanism to work is that farmers know how to use information
technology and agricultural production technology. Therefore, the government should also
improve farmers’ production skills and information equipment use skills through training.
This will increase farmers’ human capital and create conditions for promoting and applying
information technology and agricultural production technology in rural areas.

7. Deficiencies and Prospects
Based on the shortcomings of this study and the existing conclusions, follow-up research can

start from the following aspects: (1) Due to the difficulty of data collection, this paper only takes
30 provinces in mainland China as the research object. Subsequent research can take prefecture-
level cities as the research objects, and put forward more targeted policy suggestions based on their
characteristics, and (2) Subsequent research can add the measurement of planting carbon sinks to
obtain more accurate agricultural carbon emissions.
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Appendix A

Table A1. Chinese provincial names and corresponding abbreviations.

Province

Shanghai (SH) Jiangsu (JS) Zhejiang (ZJ) Anhui (AH) Fujian (FJ) Jiangxi (JX) Shandong (SD) Taiwan (TW) Beijing (BJ)
Tianjin (TJ) Shanxi (SX) Hebei (HE) Inner Mongoria (IM) Henan (HA) Hubei (HB) Hunan (HN) Guangdong (GD) Hainan (HI)

Guangxi (GX) Hong Kong (HK) Macao (MO) Chongqing (CQ) Sichuan (SC) Guizhou (GZ) Yunnan (YN) Tibet (XZ) Shaanxi (SN)
Gansu (GS) Qinghai (QH) Ningxia (NX) Xinjiang (XJ) Heilongjiang (HL) Jilin (JL) Liaoning (LN)

Table A2. Regional division of grain in China.

Areas Province

Main grain producing areas
Liaoning Inner Mongoria Henan Heilongjiang

Hebei Jiangxi Hubei
Shandong Hunan Jiangsu

Jilin Sichuan Anhui

Main grain sales areas Beijing Zhejiang Hainan Guangdong
Tianjin Fujian Shanghai

Grain production and sales balance areas
Hainan Shaanxi Xinjiang Ningxia

Chongqing Gansu Shanxi
Yunnan Qinghai Guizhou
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