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Abstract: Flooding is a recurring natural disaster worldwide; developing countries are particularly
affected due to poor mitigation and management strategies. Often discharge is used to inform the
flood forecast. The discharge is usually inferred from the water level via the rating curve because
the latter is relatively easy to measure compared to the former. This research focuses on Cambodia,
where data scarcity is prevalent, as in many developing countries. Thus, the rating curve has not
been updated, making it difficult to effectively evaluate the performance of the global streamflow
services, such as the Global Flood Awareness System (GloFAS) and Streamflow Prediction Tool (SPT),
whose longer lead time can benefit the country in taking early action. In this study, we used time
series of water level and discharge data to understand the changes in the flood plain to generate
a data-derived rating curve for fifteen stations in Cambodia. We deployed several statistical and
data-driven techniques to derive a generalized, scalable, and region-agnostic method. We further
validated the process by applying it to ten stations in the US and found similar performance. In
Cambodia, we obtained an average Kling Gupta Efficiency (KGE) of ∼99% & an average Relative
Root Mean Squared Error (RRMSE) of 12% with an average Mean Absolute Error (MAE) of 200 m3/s.
In the US, overall KGE was 97%, with an average RRMSE of 17% and an average MAE of 32 m3/s.
The results indicated that the distribution of the dataset was key in deriving a good rating curve
and that the stations with a low flow stations generally had higher errors than the high flow stations.
The time series approach was shown to have more probability in capturing the high-end and low-
end events compared to traditional method, where usually fewer data points are used. The study
demonstrates that time series of data has valuable information to update the rating curve, especially
in a data-scarce country.

Keywords: rating curve; data driven rating curve; time series rating curve

1. Introduction

Flooding is a prevalent natural disaster in many parts of the world. Few regions, such
as South-East Asia, are more prominently affected by flooding due to its recurring nature,
lack of adequate infrastructure, and mitigation strategies [1]. Several flood forecasting sys-
tems have been implemented in countries in South-East Asia to improve the management
of flash- and riverine flooding [2–7]. The accuracy of these models in parts can depend on
discharge data routinely utilized for calibration and validation purposes. Discharge can
also be used to compare the outputs of the local implementation of the hydrological model
with the global streamflow services like Streamflow Prediction Tool (SPT) [8,9] and Global
Flood Awareness System (GloFAS) [10,11]. Additionally, discharge is an essential indicator
for informing flood early warning, flash-flood, and forecast-based early action [12,13].

In an operational setting, a functional relationship called Rating Curve (RC) is estab-
lished between the stage (or water level) and the discharge (or streamflow), i.e., volumetric
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flow of water per unit time. RC can be established using field-measured stage and dis-
charge data [14,15]. The discharge information is obtained by measuring the channel’s flow
velocity and cross-sectional area, which involves significant time and resources [16–18].
The stage can be calculated manually using a gauge or automatically using telemetry
devices [18]. Once the RC is established, water managers limit operational measurements
to the stage since it is relatively easy to measure. Furthermore, the real-time discharge
is typically estimated from the previously developed RC. However, significant flooding,
changes in land-cover land-use over time, & fluctuations in sediment transport and deposi-
tion can alter channel bathymetry resulting in changes to the initially established RC [19].
Therefore, it is advised to make periodic discharge and stage measurements to re-calibrate
the RC [20].

In addition to ground observations, an empirical relationship such as one developed
by Manning [15,16] has been widely used for generating synthetic RC [21–23]. Manning’s
equation requires information on the cross-sectional area, hydraulic radius, wetted perime-
ter, energy slope, and roughness coefficient. So, several uncertainties and assumptions
may be associated with these parameter estimations [24]. For example, the geometry of the
channel is assumed to be stable at times, which may not always apply.

To overcome some of the issues related to the estimation of these additional channel
characteristics, traditional Manning’s equation has been further simplified to obtain a
power relation between stage and discharge which can be written as

Q = CdM (1)

where C and M are the fitting coefficients, Q is the discharge, and d is the stage. Empirically,
the constants C and M can be obtained from the set of lin-situ stage and discharge measure-
ments. This power form has been widely used to create an RC [25,26]. However, there are
difficulties with linearizing the measured data in power-law [27]. Since the control structure
and the geometry of the channel can affect the low and high flow [28,29], a higher-order
polynomial may be desired to capture the stage-discharge relation [30]. Therefore, more
general polynomials of higher degrees have been used [17,31]. Fenton [30] showed general
order polynomials to map the RC and discuss several aspects of its characteristics compared
to the simple power relation.

In recent years, data-driven empirical and statistical approaches have been developed
to establish the RC. Singh et al. [19] used the entropy theory-based probability distribution
method. They created a relation between drainage area and discharge to determine the
entropy index, which was used to predict discharge. However, a logarithm relation between
stage and discharge was considered, which may not always apply for all basins both
spatially and temporally. Chaplot and Birbal [32] used an Artificial Neural Network
(ANN) for deriving the RC. However, ANN, in addition to being data and computationally
expensive, may not always be interpretable; as a result, there is less adaptation by the water
manager. In addition, machine learning models especially using Multi-Layer perceptron
takes time to train the network [33], and requires specialized knowledge as the machine
learning models are prone to overfitting especially in cases where the data points are
erroneous [34]. Other techniques like using Airborne Laser Scanning has been experimented
with by [35], but it is expensive to process and implement the method.

A time-series-based data-driven RC generation is relatively less explored. Furthermore,
many studies have spatial gaps; data scarcity is rarely presented and is limited to a few
selected stations. This study aims to overcome many of these practicalities by proposing a
data-driven method that is generalized, scalable, region agnostic, and can be automated.
We utilize time series data to understand changes in the RC using hydrological statistics.
In the following sections, we present the study area, data pre-processing, quality control
needed for RC generation, the application of the proposed method, along with its results
and discussions. Finally, we demonstrated the method’s usability in the US, where the
United States Geological Survey (USGS) performs more rigorous data quality control [18].
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2. Material and Methods
2.1. Study Area

This study is focused on Cambodia, a country in South-East Asia. Cambodia is experi-
encing seasonal and flash flooding almost every year, displacing thousands of people and
contributing to regional food insecurity through farming and agricultural land damage [36].
Moreover, Cambodia and Vietnam account for two-thirds of the flood damage yearly in
the Lower Mekong Region (LMR) [36], signifying the need for the study in Cambodia.
Additionally, data scarcity is a known issue in developing countries [37], and Cambodia is
a representative example.

Figure 1 shows the locations of the 15 stations used in this study (red triangle). It
also shows the spatial patterns of the Mekong River and Tonle Sap Lake (TSL) (two
primary hydrological agents). The Mekong River meets the Mekong Delta of Vietnam
on the Southern side. Cambodia contributes about 18% of the discharge annually to the
Mekong River Basin (MRB) and covers 20% of the MRB catchment [38]. Near Kratie, three
catchments (Se Kong, Se San, and Sre Pok) met together to form the largest sub-component
in the Lower Mekong Basin (LMB), contributing about a quarter to the mainstream. Besides
the Mekong River, the country’s hydrological system is greatly influenced by the TSL. The
seasonal cycle defines the unique flow reversal in the TSL, supporting people’s livelihood
via agriculture and providing life to one of the world’s wealthiest and most prosperous
freshwater marine ecosystems [39]. By the time the water reaches Phnom Penh near
TSL, about 95% of the flow has entered the Mekong. The climate and the annual flow in
Cambodia (and the Mekong) are highly influenced by the seasonal tropical monsoon, with
about 73% of the discharge between June and November [4,38].

Figure 1. The red triangle indicates the gauge locations for which we developed the rating curve in
Cambodia. The map also shows the surface water occurrence taken from European Commission’s
Joint Research Centre (JRC) and the major river networks in the country.

We also applied the methods developed for Cambodia to 10 stations in the US. These
stations were selected at random in diverse hydrological region including wet to dry areas
representing variations and ranges in streamflow. A random selection of stations was
used to prevent sample bias when testing in the US. This was done to test and ensure the
method’s robustness, scalability, and transferability and to understand the performance in
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regions with different hydrological processes. Figure 2 shows the location of ten selected
US stations.

US	Stations

Major	Rivers

Figure 2. Map shows stations (in the red triangle) in the US over which we applied the methods
developed in this study.

2.2. Observation Dataset

We obtained Cambodia’s stream gauge observation data (stage and discharge) from
the MRC Data Portal (https://portal.mrcmekong.org/, accessed on 1 April 2022). The
MRC gauge stations measure hydrometeorology, climate, and water quality parameters.
The selected gauges had both discharge (m3/s) and stage height (m) measurements. Some
of these discharges were measured as part of the Discharge and Sediment Monitoring
Project (DSMP) [40] project. The discharge obtained from DSMP is referred to as measured
discharge hereon. Others were provided as the Daily Calculated values; these discharges are
referred to as calculated discharge. We did not find any literature on the difference between
the calculated discharge and the discharge obtained from the DSMP project. In the case of
water level, most gauges make the stage measurement daily. The stage measurement was
done manually using gauge reading or automatically by the telemetry reading.

Table 1 lists the selected stations in Cambodia; the ID column corresponds to the
station number shown in Figure 1. The ‘Discharge Reported’ column indicates whether the
station’s discharge was reported regularly until the study was completed. About 73% of
the stations did not report the discharge daily but did report the stage. The RC has not been
updated to report the discharge, further signifying the need to update the rating curve.
However, Cambodia made several discharge data measurements in the past through the
DSMP, which was used in the study.

The stations spread from the Mekong mainstream to the tributaries indicating varia-
tions in the watersheds. The available stations had records for an extended period, which
is essential in hydrology for understanding the trends and natural (annual/seasonal)
cycles [41]. Stung Treng had the longest records that date back to 1910, while Koh Khel
records started from 1991.

https://portal.mrcmekong.org/
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Table 1. List of stations in Cambodia and their location used in the study. The ‘ID’ column maps
to the stations shown in Figure 1. The ‘discharge reported’ column indicates whether the discharge
for that station was reported regularly when the study was started. The ‘Min Date’ and ‘Max Date’
represent the earliest and latest stage-discharge pair available for the station.

ID Station Name Latitude Longitude Discharge Reported Drainage Area (km2) Min Date Max Date

1 Battambang 13.092 103.200 No 3110 1962-04-03 2002-12-31
2 Chaktomuk 11.563 104.935 No 86,510 1960-01-01 2002-12-31
3 Kg. Thmar 12.503 105.127 No 3960 1962-04-23 2002-12-31
4 Koh Khel 11.242 105.036 No 6400 1991-01-01 2000-12-31
5 Kompong Cham 11.911 105.384 No 666,000 1960-01-01 2002-12-31
6 Kompong Chen 12.939 105.579 No 1350 1962-04-24 2002-12-31
7 Kompong Kdei 13.129 105.335 No 11,500 1962-05-21 2002-12-10
8 Kompong Thom 12.715 104.888 No 13,850 1961-03-04 2002-12-31
9 Kratie 12.481 106.018 Yes 646,000 1933-03-14 2020-12-31

10 Lumphat 13.501 106.971 Yes 27,600 1965-01-01 2020-12-31
11 Neak Luong 11.263 105.280 No 750,000 1965-01-01 2002-12-31
12 Siempang 14.115 106.388 No 25,240 1965-01-01 2012-12-31
13 Sisophon 13.587 102.977 No 4240 1962-04-02 2002-12-15
14 Stung Treng 13.533 105.950 Yes 635,000 1910-01-01 2020-12-31
15 Voeun Sai 13.968 106.884 Yes 15,720 1965-01-01 2020-12-31

The measurement data for the US were obtained using USGS API (https://waterservices.
usgs.gov/rest/, accessed on 1 June 2022). The discharge was obtained in cubic feet per
second (ft3/s) and stage in feet (ft) and converted to meters per second (m3/s) and meters
(m) for consistency. Table 2 lists the stations with their USGS code and location.

Table 2. List of the stations used in the US with their location. The ‘ID’ column maps to the stations
shown in Figure 2. The ‘Min Date’ and ‘Max Date’ represent the earliest and latest stage-discharge
pair available for the station.

ID Station Name USGS Code Latitude Longitude
Drainage Area

(km2) Min Date Max Date

1 Abbotts Creek At Lexington, NC 02121500 35.807 −80.235 450 2010-01-01 2020-12-31
2 Brazos River Near Hempstead, TX 08111500 30.129 −96.188 88,870 2010-01-01 2020-12-31
3 Cache River at Forman, IL 03612000 37.336 −88.924 632 2010-01-01 2020-12-31
4 Colville River At Kettle Falls, WA 12409000 48.594 −118.061 2608 2010-01-01 2020-12-31
5 Elk River Near Pelham, TN 03578000 35.297 −85.870 170 2010-01-01 2020-12-31
6 Kootenai River At Leonia, ID 12305000 48.618 −116.046 30,406 2010-01-01 2020-12-31
7 Mississippi River At Baton Rouge, LA 07374000 30.446 −91.192 2,915,834 2010-01-01 2020-12-31

8
Rio Tesuque Below Diversions Near

Santa Fe, NM 08308050 35.772 −105.941 78 2017-05-27 2020-06-27

9 Spanish Fork at Castilla, UT 10150500 40.050 −111.547 1688 2010-01-01 2020-12-31
10 Susquehanna River At Sunbury, PA 01554000 40.834 −76.827 47,396 2010-01-01 2020-12-31

2.3. Data Preparation

A total of 15 stations were selected that spread in the Mekong mainstream and trib-
utaries (refer to Figure 1). Both measured and daily calculated data were used in this study.
The manual stage and measured discharge observations were given preferences over the
telemetry stage or calculated discharge, respectively, in case of duplication. The calculated
discharge and telemetry stage data were only used for dates when the measured discharge or
manual stage data were unavailable. The measured discharge came from the DSMP project
and was measured during the project period, while the calculated discharge was provided
as “Daily Calculated” values, with no other information. We did not find any literature
on the difference between the daily calculated discharge and the discharge obtained from
the DSMP project. The manual stage data was preferred over the telemetry because the

https://waterservices.usgs.gov/rest/
https://waterservices.usgs.gov/rest/
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manual observation covered the study period more comprehensively and consistently. The
telemetry-based stage data may be unavailable due to system failure, maintenance, or other
challenges. The common discharge statistics for each stations is shown in Table 3. The
datasets were obtained in a daily timescale. This may make it easier for comparison because
many global streamflow services, such as Streamflow Prediction Tool (SPT) and Global
Flood Awareness System (GloFAS) provide daily forecast values for discharge. However,
this also means some of the small basin where the runoff process is fast, those ephemeral
events may not be captured well.

Finally, we fitted the power form (Equation (1)) to the selected station’s data; the result
of which are shown in Figure 3 as log fitted line. We noticed that, while some followed the
power law, many didn’t fit to the power law. Thus, various preprocessing routines were
done before mapping the relation between stage and discharge.

Table 3. The table lists the common discharge statistics for stations in Cambodia. The Qmin is the
minimum flow, Qmax is the maximum flow, Qavg is the average flow, Qpn represents the nth percentile
flow for the station across the timeseries. The unit of Q is m3/s.

Station Qmin Qmax Qavg Qp20 Qp50 Qp80

Battambang 1.00 1141.00 59.38 3.00 19.00 103.00
Chaktomuk 6.20 8370.00 2111.51 295.00 1390.00 4217.60
Kg. Thmar 1.37 329.00 73.33 9.53 37.75 142.41
Koh Khel 73.06 4501.65 1374.47 163.53 794.81 2948.13
Kompong

Cham 1947.00 69,025.00 14,320.82 2949.00 6506.00 28,433.00

Kompong Chen 1.04 539.78 37.40 3.80 8.79 77.64
Kompong Kdei 1.02 211.13 20.56 3.54 5.85 24.54

Kompong
Thom 1.00 1060.00 235.15 9.00 84.20 546.00

Kratie 1250.00 66,700.00 13,482.16 2750.00 6275.00 26,500.00
Lumphat 28.71 8562.00 832.22 193.48 429.53 1257.35

Neak Luong 1374.00 32,188.00 12,237.90 3924.40 10,444.00 20,809.20
Siempang 67.50 9015.95 1234.07 237.00 534.33 2410.00
Sisophon 2.00 300.00 38.72 6.00 19.00 62.00

Stung Treng 1007.00 78,093.00 13,556.94 2718.00 6800.00 25,500.00
Voeun Sai 117.00 17,950.67 940.83 394.30 659.51 1414.00

Similarly, the common discharge statistics for each stations in the US is shown in
Table 4.

Table 4. The table lists the common discharge statistics for stations in the US. The Qmin is the
minimum flow, Qmax is the maximum flow, Qavg is the average flow, Qpn represents the nth percentile
flow for the station across the timeseries. The unit of Q is m3/s.

Station Qmin Qmax Qavg Qp20 Qp50 Qp80

Abbotts Creek At Lexington, NC 0.27 109.02 5.34 0.84 2.21 6.08
Brazos River Near Hempstead, TX 5.32 2432.41 228.15 21.78 63.71 319.98

Cache River At Forman, IL 0.03 125.44 10.08 0.27 2.3 16.82
Colville River At Kettle Falls, WA 0.78 88.63 10.59 3.62 5.97 14.53

Elk River Near Pelham, TN 0.04 131.96 4.85 0.49 2.02 6.24
Kootenai River At Leonia, ID 124.03 1509.29 406.81 168.77 302.99 659.78

Mississippi River At Baton Rouge, LA 4247.52 38,510.85 16,870.23 9118.01 15,574.24 24,040.96
Rio Tesuque Below Diversions Near

Santa Fe, NM 0.00 0.45 0.04 0.01 0.02 0.05

Spanish Fork At Castilla, UT 1.82 45.31 7.95 3.45 4.79 12.52
Susquehanna River At Sunbury, PA 60.31 6711.08 844.95 225.68 569.17 1302.57
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Figure 3. The plot of stage-discharge in Cambodia depicted more than one Rating Curve. The figure
also shows a power fitted line to the data points. In addition, the stations contained outlier records in
the dataset.

2.4. Methods

Figure 4 shows a high-level Rating Curve generation workflow. A detailed explanation
of each step is provided in the following sections. In a high-level, the workflow included
filtering the records to a 95% prediction interval, then dividing the data into separate
clusters to account for changes in the flood plain before running the outlier detection
algorithm in those groups. Finally, a piecewise linear regression was run through the inlier
dataset.
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Figure 4. Data-driven Rating Curve high-level workflow. The workflow included filtering the records
to a 95% prediction interval, then dividing the data into separate clusters to account for changes in
the flood plain before running the outlier detection algorithm in these groups. Finally, a piecewise
linear regression was run through the inliner dataset.

2.4.1. Prediction Interval

Cambodia’s down-selected stage and discharge data required additional quality con-
trol measures to remove erroneous and outlying data values. For quality control, data
meeting a 95% prediction interval (PI) were filtered using the second-degree power relation
of the stage-discharge.

In most cases, the peak of the data was preserved, while the distribution width
(especially in the mid-ranges) was penalized—the implications of the 95% PI in more length
are discussed in Section 3. On average, 5% of the data were removed, with a minimum of
0% and a maximum of 8.9% at a given station. The number of data available at each station
before and after the 95% PI filtering is shown in the Table A1.

2.4.2. Clustering

Plotting the quality-controlled stage and discharge data revealed that some stations
had more than one RC, as shown in Figure 3. As a result, it was necessary to perform
additional re-sampling and clustering. Multiple RCs were likely due to significant flood
events, noise in the dataset, measurement error, reverse flow (especially near the TSL), or
a combination of these factors. For example, severe flooding and flash flooding events
were reported during 1996, 2000, 2001, 2010 to 2018 [36] that may have impacted the
relation between stage and discharge. In addition, the overland flow of water from the
mainstream and the tributaries contributing to TSL can expand up to 14,000 km2 during
the wet season [38,42] and affects Kompong Thom, Kg. Thamar, Kompong Cham, Kratie,
and Chaktomuk (where the TSP joins the Mekong River) [43].

The resulting 95% PI data were divided into two clusters obtained via the K-Means
clustering algorithm [44]. The K-Means clustering (an unsupervised algorithm) separates
the data into K-clusters by minimizing the distance between the cluster center and the data
points. The K-Means is an iterative algorithm, so the center of the clusters may change at
each iteration [44,45]. Most stations with multiple rating curves showed two clusters (refer
to Figure 3); thus, we decided on two groups for the clustering algorithm. The clustering
helped to account for changes in the flood plain.

To account for stations that did not need a cluster, we first divided each station’s
data into two groups using K-Means. Then, we inspected the Euclidean distance between
the center of the clusters. If the distance between the center was less than the specified
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threshold, we resolved that the station did not need a group. The threshold was determined
experimentally, and the length of one unit worked for us. The distance-based approach
takes inspiration from the model introduced by [46]. We used both time and stage values
as the input clustering features to the K-means, which was valuable in separating the data
points at different times in different clusters.

2.4.3. Sampling

Next, the dataset was divided into training and testing using a 3:1 ratio. Finally, the
sampling was stratified randomly based on clusters, quantiles, and a mix of clusters and
quantiles.

In cluster-based sampling, if the cluster was necessary, each cluster was randomly
sampled; else, the entire dataset was randomly sampled. For the quantiles-based selection,
the four quantiles (at 25%, 50%, 75% & 100%) were obtained and sampled stratified ran-
domly to get training and testing portions. Then if the cluster was necessary, the training
dataset was partitioned into two groupings. For the mixed approach, if the cluster was
required, each group was divided into four quantiles. Then, each cluster’s training and
testing data were obtained using quantiles as the stratified random sampler. If the cluster
was not necessary, we calculated the quantiles of the entire data and got the training and
testing data using stratified random sampling.

2.4.4. Outlier Detection

Some stations showed outlier data which could have arisen because of measurement
errors or lack of initial quality control. Figure 3 shows some of these stations. Therefore, an
outlier detection algorithm was run on each sampled group. We found that, in general, the
one-class Support Vector Machine (SVM) [47,48] effectively detected outliers. One-class SVM
helps detect outliers in the dataset using kernel function; we used Radial Basis Function
(RBF). The RBF kernel forms the envelope around the dataset by transforming the data into
a high-dimensional space. This transformation is done in the original feature space without
changing the coordinates, commonly called the “kernel trick”. In this study, we did not
attempt to quantify the effectiveness or efficiency of outlier detection algorithms; instead,
the outlier detection algorithms can be changed as needed. We used the python package
sklearn [49] for the outlier detection algorithms. Sklearn supports algorithms related to
clustering, outlier detection, and several other ML methods.

2.4.5. Piecewise Curve Fitting

Finally, a linear-piecewise curve was fitted to the obtained inlier data. We experi-
mented with different degree; while keeping scalability, simplicity, and trackability in mind,
we decided on two linear curves of second-degree, which provided reasonable accuracy
without being overly complicated, to account for high and low flows. Three breakpoints
were needed to fit the two linear curves. We used python’s pwlf module [50] to perform
the piecewise linear fitting. The starting and ending breakpoints were the minimum and
maximum stage values. The second break point was obtained by (1) using the Differential
Evolution (DE) [51] and (2) using the 50th percentile of the stage dataset, referred to as
percentile break point hereafter. The DE is an iterative optimization algorithm that usually
minimizes an objective function [51]; we used the sum of square error. The breakpoint is
referred to as auto break point hereafter.

The choice of the breakpoint was made by inspecting the absolute percent difference
between them (auto and percentile). We selected the auto break point if the percent difference
was within a specific range determined empirically.

2.4.6. Accuracy Assessment

We report three statistical parameters to understand the performance of the model,
namely Kling-Gupta Efficiency (KGE) [52,53], Mean Absolute Error (MAE), and Relative
Root Mean Squared Error (RRMSE).
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KGE is widely used in hydrological applications [54,55]. The KGE provides the
decomposition to analyze the three components (correlation, bias, and variability) [52]. The
KGE ranges from −in f inity to 1; the closer to 1, the better the model. Knoben et al. [56]
argues that KGE of −0.41 is equivalent to a model having the same explanatory power as
the mean of the observation. The KGE is calculated as

KGE = 1−
√
(r− 1)2 + (β− 1)2 + (γ− 1)2 (2)

where
β =

µP
µO

(3)

γ =
σP/µP
σO/µO

(4)

r = ∑N
t=1(Ot − µO)(Pt − µP)√

∑N
t=1(Ot − µO)2 ∑N

t=1(Pt − µP)2
(5)

where β is the bias ratio, γ is the variability ratio, r is the Pearson correlation coefficient,
N is the length of the dataset, Ot is the observed discharge at time t, Pt is the predicted
discharge at time t, µO is the mean of the observed discharge, µP is the mean of the predicted
discharge, σO is the standard deviation (SD) of the observed discharge, and σP is the SD of
the predicted discharge.

The MAE is the average of the residual for the time series. It provides information
on the average quantity that the prediction differs from the observation. The MAE is
computed as

MAE =
1
N

N

∑
t=1
|Ot − Pt| (6)

where N is the length of the dataset, Ot is the observed discharge at time t, Pt is the
predicted discharge at that time, and |x| is the absolute value operator on quantity x.

RMSE is a common measure of performance of model prediction [57]. The RRMSE is
a normalized version of RMSE that allows the comparison between different stations at
different basins [58]. The RRMSE here is presented in percentage form and calculated as

RRMSE =

√
1
N ∑N

t=1(Ot − Pt)2

µO
∗ 100% (7)

where N is the length of the dataset, Ot is the observed discharge at time t, and Pt is the
predicted discharge at that time, and µO is the mean of the observed discharges.

3. Results & Discussions
3.1. Application in Cambodia

The sampling technique with the mixed approach as described in Section 2.4.3 worked
best for Cambodia. The result of validating 25% of the data per station is shown in Table 5.
The KGE was >96% for all stations. The MAE ranges from 0.6 to 1154.8 m3/s, with around
47% of the stations having a single-digit MAE, and 60% having a single-digit RRMSE.
Since the KGE is high (>96%), we have only shown each station’s MAE & RRMSE values
in Figure 5. Table 5 also presents the overall mean and standard deviation (SD) for each
statistic. The model produced an average KGE, MAE, and RRMSE of 99.1%, 199.8 m3/s, and
10.8% respectively, with the average SD of 1%, 369.3 m3/s, and 7.6% for KGE, MAE, and
RRMSE, respectively. Overall, the stations on the Mekong main river channel (Kompong
Cham, Kratie, Neak Luong, and Stung Treng) had lower RRMSE (10.0%) than other stations
(11.1%) .
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Figure 5. The model’s performance against the observation discharge for different monitoring stations.
The statistical performance parameters include MAPE (left) and MAE (right).

Table 5. Results of validating the Rating Curve for fifteen different stations in Cambodia.

ID Station KGE MAE RRMSE

1 Battambang 0.986 5.023 18.722
2 Chaktomuk 0.995 93.051 8.342
3 Kg. Thmar 0.998 0.907 2.733
4 Koh Khel 1.000 2.534 0.208
5 Kompong Cham 0.991 973.741 11.970
6 Kompong Chen 0.995 1.126 8.340
7 Kompong Kdei 0.992 0.603 17.515
8 Kompong Thom 0.972 23.834 27.107
9 Kratie 0.984 1154.824 16.782
10 Lumphat 0.996 36.883 7.997
11 Neak Luong 0.997 351.567 4.689
12 Siempang 0.999 9.157 2.707
13 Sisophon 0.967 2.798 19.557
14 Stung Treng 0.998 299.945 6.420
15 Voeun Sai 0.995 40.345 8.401

Mean 0.991 199.756 10.766
Standard Deviation 0.010 369.281 7.619

Additionally, we determined three levels of flows (high, medium, and low) for each
stations. The high flow records were defined as the flows equal or above the 80th percentile
flow (Q ≥ Qp80) for the station; the low flow records were defined as the one equal
or below the 20th percentile flow (Q ≤ Qp20) for the station, and anything in between
(Qp20 < Q < Qp80) was defined to be mid flow records. The MAE and RRMSE were
calculated for each flow level from the discharge estimates for each station and shown
in Table 6, where the mean and SD for each flow are also shown. The MAE for the mid
flow records was almost five and half times (5.4×) more that of the MAE for the low flow
records, while the MAE for the high flow records was nearly three times (2.9×) of the
mid-flow records. In contrast, the high flow records had the lowest RRMSE which was
two and half times (2.5×) lesser than the low flow records. The mid flow records had the
highest RRMSE which was more than two and half times (2.8×) than the low flow records.

Figure 6 shows the time series and the associated scatter plots of the discharge as
estimated using DDRC against observed data for Cambodia. The plot show the 1:1 line to
highlight the differences between the simulated and observed streamflow data. The stations
shown in Figure 6 have stations affected by the overland flow of the TSL (Chaktomuk &
Kompong Thom), and stations with range of discharge (Battambang, Kompong Kdei, Koh
Khel, Kratie, & Neak Luong).
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Figure 6. Cont.
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Figure 6. Predicted and observed discharge for Cambodia with fitted and 1:1 line. For visualization
purposes, in the case of a time series plot (left side), the data are downsampled into a weekly bin,
and the mean values of the discharge failing into the bins for the last five years for the station are
shown while the scatter plot (right side plot) shows all the validation data points. For Kompong Kdei,
the upper flows of ∼175 m3/s visible in the scatter plot are from early years (not from the last five
years as shown in the left plot) and can be seen in the full-time series plot available in Appendix A at
Figure A1.

The scatter plot at Kompong Thom, which had the highest RRMSE, shows that the
prediction was poor at the low end compared to the high end. There is a data gap between
the years 1970 and 1982 (Figure A1). The data gap could be due to Cambodia’s political
instability because of Civil War [59,60]. Chaktomuk’s data appeared to have split into
two ends at the high end. The model approximates the discharge by taking the values
between two splits. The model at Neak Luong showed constant under prediction at low
end before 1972 (Refer to Figure A1). The base flow of Neak Luong before 1972 has changed
from that after 1980, which may be due to the massive flooding that occured in 1978 [61].
The clustering with time and stage as input features captured this variation. The model
perfectly fits at Koh Khel (with KGE of 1.0). The station had a well-distributed dataset at
low, mid, and high flow records.
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Table 6. The table lists the Mean Absolute Error (MAE) and Relative Root Mean Squared Error
(RRMSE) for the stations’ high, mid, and low flows. The high flows are the flows equal to or above
the 80th percentile, the low flows are the flows equal to or below the 20th percentile, while in between
high and low flows are the mid flows. The unit of Q is m3/s.

Station Qhigh Qmid Qlow
MAE RRMSE MAE RRMSE MAE RRMSE

Battambang 7.653 7.777 5.917 27.326 0.459 31.519
Chaktomuk 207.806 6.115 85.477 17.681 16.786 7.203
Kg. Thmar 2.215 1.643 0.906 1.417 0.054 2.860
Koh Khel 1.978 0.074 2.766 2.733 2.564 0.335

Kompong Cham 2179.283 6.431 980.935 2.748 56.442 16.626
Kompong Chen 0.900 1.792 1.402 38.641 0.549 16.804
Kompong Kdei 3.907 10.24 0.163 5.282 0.035 7.741

Kompong Thom 28.137 7.502 29.144 307.327 6.721 50.005
Kratie 3204.292 11.557 883.934 12.223 217.841 15.445

Lumphat 53.854 4.112 31.328 34.634 38.992 9.505
Neak Luong 577.349 3.149 364.371 2.615 41.487 5.363

Siempang 21.334 1.913 6.208 2.757 3.656 1.305
Sisophon 6.927 9.544 2.286 73.672 1.044 26.922

Stung Treng 1084.199 4.726 173.109 4.799 57.756 3.822
Voeun Sai 67.900 4.954 32.099 33.277 39.574 7.579

Mean 496.516 5.435 173.336 37.809 32.264 13.536
Standard Deviation 959.157 3.435 323.583 77.241 55.753 13.577

3.2. Application in the US

We applied the method to some stations in the US obtained from USGS. These stations
were selected in random to represent range of flows. (e.g., Rio Tesuque below diversions
near Santa Fe in New Mexico & Mississippi River at Baton Rouge in Louisiana).

Since USGS performs quality control on the data, we used ten years of data (2010 to
2020). The sampling technique with the mixed approach worked best for the US as well.
The results of validating 25% of the data per station are shown in Table 7. The KGE values
are similar to Cambodia (>0.90 for all stations); the MAE had a lower range, for example,
the Brazos River Near Hempstead (mean flow of 228.2 m3/s) had MAE of 10.50 m3/s,
while a similar flow station in Cambodia, Kompong Thom (mean flow of 235.2 m3/s) had
MAE of 23.83 m3/s. This could be because of the overland flow of water at Kompong
Thom as discuss more later. A high-flow station in the US placed at the Mississippi river
at Baton Rouge had lower MAE of 296.22 m3/s; the high flow station in Cambodia, Neak
Luong which had MAE of 351.57 m3/s. This may be because of data quality especially the
dataset before 1973 for Neak Luong. Figure 7 shows the time series and the scatter plots for
the implementation in the US.

Table 7. Results of validating the Rating Curve for ten different stations in the US. The overall
performance was comparable to Cambodia.

ID Station KGE MAE RRMSE

1 Abbotts Creek At Lexington, NC 0.996 0.344 12.287
2 Brazos River Near Hempstead, TX 0.997 10.504 10.938
3 Cache River At Forman, IL 0.962 1.494 36.487
4 Colville River At Kettle Falls, WA 0.974 1.141 20.703
5 Elk River Near Pelham, TN 0.977 0.604 28.122
6 Kootenai River At Leonia, ID 0.999 2.304 0.978
7 Mississippi River At Baton Rouge, LA 0.995 296.219 2.801
8 Rio Tesuque Below Diversions

Near Santa Fe, NM
0.909 0.009 39.107

9 Spanish Fork At Castilla, UT 0.963 0.751 16.164
10 Susquehanna River At Sunbury, PA 0.999 6.804 1.328

Mean 0.977 32.017 16.892
Standard Deviation 0.028 92.892 14.021
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Figure 7. Predicted and observed discharge for the US with fitted and 1:1 line. For visualization
purposes, in the case of a time series plot (left side), the data are downsampled into a weekly bin,
and the mean values of the discharge failing into the bins are shown, while the scatter plot (right side
plot) shows all the validation data points.

Similar to Cambodia, we determined three levels of flows (high, medium, and low) for
each stations with the same definition, where the high flow records were the flows equal or
above the 80th percentile flow (Q ≥ Qp80) for the station, the low flow records were the
one equal or below the 20th percentile flow (Q ≤ Qp20) for the station, and anything in
between (Qp20 < Q < Qp80) was defined to be mid flow records. The MAE and RRMSE of
this analysis for each station is shown in Table 8. The MAE for the mid flow records was
almost twice (1.7×) that of the MAE for the low flow records, while the MAE for the high
flow records were four times (4.0×) the mid flow records. In contrast, the high flow records
had the lowest RRMSE which was almost one and half times (1.3×) lesser than the low
flow records. The mid flow records had the highest RRMSE which was almost two and
half times (2.4×) more than the low flow records.
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Table 8. The table lists the Mean Absolute Error (MAE) and Relative Root Mean Squared Error
(RRMSE) for the high, mid, and low flows within the stations. The high flows are the flows equal to
or above the 80th percentile, the low flows are the flows equal to or below the 20th percentile, while
in between high and low flows are the mid flows. The unit of Q is m3/s.

Station Qhigh Qmid Qlow
MAE RRMSE MAE RRMSE MAE RRMSE

Abbotts Creek At Lexington, NC 0.661 6.048 0.332 22.225 0.097 18.547
Brazos River Near Hempstead, TX 42.538 6.026 4.622 19.728 2.570 7.545

Cache River At Forman, IL 5.412 19.947 0.720 106.264 0.079 41.223
Colville River At Kettle Falls, WA 3.674 15.944 0.645 13.458 0.311 13.936

Elk River Near Pelham, TN 1.560 17.542 0.459 142.081 0.217 23.826
Kootenai River At Leonia, ID 4.679 0.782 2.173 0.827 0.760 0.961

Mississippi River At Baton Rouge, LA 784.163 3.080 194.461 2.238 116.091 1.802
Rio Tesuque Below Diversions Near Santa Fe, NM 0.018 31.625 0.006 58.531 0.005 27.537

Spanish Fork At Castilla, UT 1.850 13.038 0.600 4.245 0.107 15.179
Susquehanna River At Sunbury, PA 6.247 0.430 7.690 3.830 4.655 1.903

Mean 85.080 11.446 21.171 37.343 12.489 15.246
Standard Deviation 245.955 10.017 60.937 49.512 36.433 13.056

3.3. Discussion

The analysis of results from both Cambodia and US stations suggest that the proposed
method worked well across the regions. We used time-series information to understand
the changes in the floodplain to generalize the RC. The method is scalable, automatic, and
modular; choices for different routines in the methods can be switched, added, or removed.

Results showed that the high flow records had lower errors associated with them
(Tables 3 and 4) and was observed in both cases of the Cambodia and the US status. The
practical implications for these results comparing high, mid, and low flow show that the
DDRC method is better at predicting discharge from gauge height during high flow events
(i.e., flood events). Conversely, during low flow events (i.e., Drought periods) the estimated
discharge is shown to have a lower accuracy. This was also consistent with study by [62]
who used Gene Expression Programming (GEP) [63] as a data-derived approach, and found
that GEP was more reliable for extreme flood events.

Similarly, the distribution of the data points affected the performance. The Rio Tesuque
station near Santa Fe in New Mexico had lower KGE (90.9%) and highest RRMSE (39.1%)
than other stations. The fitted model was under predicting which is evident by the slope
of the fitted line (0.87) which was less than 1.0. This is an extremely low flow station
(Qavg = 0.04 m3/s), with few data points and gaps between 2018 and 2019. The data points
are concentrated at the lower end compared to the mid and high end. Likewise, Elk River
near Pelham in Tennessee had few points on the high end. We observed underpredictions
during the early years (2010–2013). In Mekong, main stream stations–Kompong Cham,
Kratie, Neak Luong, and Stung Treng had almost 62% of the record (refer to Table A1), and
thus probability of capturing high and low end is better. The stations in the mainstream
were found to have relatively lower RRMSE (average of 10.0% across the mainstream
stations vs. 11.1% for the rest) despite having higher MAE (average of 695.0 m3/s across
the mainstream stations vs. 19.7 m3/s for the rest). The higher MAE in the mainstream is
because of their large flow (average of 13,399.5 m3/s vs. 632.5 m3/s for the rest), seasonal
variations in discharge, and reversal flow of the TSL.

The effect of reversal flow between TSL and Mekong can be seen in the nearby stations.
For example, Kompong Thom, on the tributary, suffers from the overland flow from the
TSL and the Mekong river [64]; thus Kompong Thom has the highest RRMSE. The high
flow records were better captured than the mid and low flows (Refer to Table 6). A similar
effect can also be seen in mainstream station Kompong Cham and Kratie which are affected
by the overland flow between TSL and Mekong River. Kratie is generally considered to
be the starting point for the reverse flow [4]. The MAE for Kratie and Kompong Cham
(1154.82 m3/s and 973.74 m3/s, respectively) are worse than other mainstream stations—
Neak Luong and Stung Treng (351.57 m3/s and 299.95 m3/s, respectively). The TSL meet
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the Mekong river at the confluence of the Chaktomuk, greatly influencing this station’s
high and mid flow (Refer to Figure A1). Below this, the river splits into Bassac river and
the Mekong river.

Other stations in Mekong, Battambang, and Sisophon also had high RRMSE with
few data points on the high end. These stations lie on the tributaries outside the Mekong
mainstream and contribute downstream to the Tonle Sap Lake. Seasonal rainfall may be
linked to the increased flow during the wet season (Refer to Figure A3) with a very low
baseflow during the dry season. The other reason could be that those points were outliers
not detected by the outlier algorithm. Similarly, stations in the US also have seasonal spike
in their flow due to the rainfall events (Refer to Figure A4)

The rating curve tends to change over time; we noticed this phenomenon in several
stations. The stations shown in Figure 3 represent such conditions at stations in Cambodia,
where different rating curve was observed. Some of the changes for the stations in the US
are shown in Figure 8. The runoff generating in Cambodia has a strong seasonality related
to the wet season (June to November). Thus, separate rating curve may be explained by the
rising and falling stage hydrograph. For stations considered here, depending upon dry or
wet year, there could be up to two to three peaks with clear seasonality [4,65]. These are
usually prevalent for high flow stations, like Stung Treng and Kratie. Thus, the clustering
technique with the piecewise regression attempts to separate those rating curve and capture
the non-linearity of the hydrograph.

One of the major opportunities (and a challenge) for the method was data quality in
Cambodia. Significant data gaps or incomplete records were observed in many stations;
in Neak Luong, the low flow was significantly different before 1971 compared to after the
1980s, with a data gap in between. Similarly, we observed that the model was mostly under
predicting before the gap years (around 1970 or 1975) in Chaktomuk, Kompong Thom, and
Kratie (Figure A1). This may be linked to data quality or the inadequacy of the K-Means to
separate them; other clustering algorithms based on density for example Density-Based
Spatial Clustering of Applications with Noise DBSCAN [66,67] or based on distribution for
example Gaussian Mixture Model [68] may perform better.
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Figure 8. The plot of the stage-discharge measurements depicts different rating curve for the stations
in the US.
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We considered a second-order power stage-discharge relationship as this was found
experimentally to fit most stations without being overly complicated in Cambodia. This
relationship was consistent with the result [69] found in their study in the Mekong using
the satellite altimetry stage data. With this relation, we then performed a 95% prediction
interval. We noticed that, while this removed outliers from most of the stations and
performed well, for some stations, e.g., Brazos River near Hempstead in Texas, as shown in
Figure 9, a higher-order relation may be desirable. In another study [19], this station near
Hempstead in Texas was also used. Even with the second-order relation removing some
points in the high end (refer to Figure 9), the maximum discharge was set at 2432.41 m3/s in
this study as opposed to 1605 m3/s in [19]; the NSE [70] and RMSE of validation data-points
(calculations not shown here) were 0.996 and 21.4 m3/s while it was 0.941 and 34.31 m3/s
in [19]. Thus, the longer time series gives higher probability of capturing the high-end
or low-end events, which may be considered as a built-in extrapolation characteristics as
compared to a traditional method where few data points are often used.
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Figure 9. The figure shows the result of applying the 95% Prediction Interval with second-degree
log stage-discharge relation, while most stations adhered to this relation, some (for example, Brazos
River near Hempstead in Texas) did not strictly followed; a higher order may be needed.
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We tweaked several parameters that affected the model’s performance. These were
determined experimentally. Some of them are:

1. Threshold, controlling the absolute percent difference between the auto and percentile
breakpoint, took numerical values.

2. The Euclidean distance between the centers of the clusters: this parameter determined
whether the cluster was necessary for the station and took numerical values.

3. The outlier detection contained various parameters in the algorithm. For example,
sklearn’s OneClassSVM, which was used in the study, has parameters like the upper
bound on the fraction of training error (also called nu), choice of kernel, and kernel
coefficient.

We determined a single set of parameters for the country. Adjusting individual station
parameters may be desirable during an operational implementation of the method, which
may further increase the confidence in the rating curve. Furthermore, we constrained
our rating curve model to second-order polynomial fitting which may not represent the
dynamics of the gauge height and discharge relationship in all cases. Additional constraints
include assuming only one to two clusters for gauge height-discharge relationship where
some stations may have three or more clusters. The rating curve results are only relevant
within the data range of the training data used, extrapolating the rating curve outside the
data range could lead to several uncertainties [23,71]. We did not test the error uncertainty
for extrapolation, which should be used cautiously, although a time series based rating
curve has higher probability of capturing the high-end and low-end events, as explained
above, compared to traditional method where lesser data points are used. This study did
not inspect the threshold for number of data points required to produce accuracy results
(for the final results and at each step in the workflow), although investigation of how
limited data influence the data driven results will be explored in future work. For this
study the fewest number of data points to create the rating curve was 152 points at the Rio
Tesuque Diversions station (Figure 7). From a practical point of view, this method is useful
for converting gauge height measurements to discharge, where there is relatively limited
discharge data that is not measured regularly has not been updated.

Data driven approaches typically obscure the decisions being made on data to produce
the results [72]. Model interprebility for data driven approaches is important within the
scientific disciplines as it lends to understanding of the models decisions and supports
scientific discovery. The methodology presented in the paper combines multiple inter-
pretable models including K-Means clustering, one-class SVM, and piece-wise polynomial
regressions. As such, the different data driven decisions can be inspected and interrogated
for additional information. Figure 10 displays the results from multiple steps of training
the DDRC for a station, in this case Kompong Kdei. It can be seen that the clustering
determines the two best rating curves, while the outlier detection removes certain data
points to refine a rating curve. Each individual component of these models can be output
and interpreted to better understand how the data has informed the final rating curve result.
Additional knowledge on particular flooding event to determine the breakpoints maybe
integrated to increase the fitting accuracy of the rating curve. In addition to including
physical attributes to drive the rating curve fitting, Physics Informed Neural Network
(PINN) can be implemented in order to increase the robustness and interpretability of the
model, for example, to incorporate information on backwater may also benefit. Future
work will include investigating the application of PINNs for the rating curve fitting process.
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Figure 10. Figure shows the clusters (represented by class_0 and class_1) and result of outlier de-
tection (represented as c0-inlier and c1-inlier). The fitting of the polynomials are represented as
pw_p50_poly_2_c1 and pw_p50_poly_2_c0.

4. Conclusions

We introduced a data-driven method for automatically generating the stage-discharge
rating curve and showed uncertainties using a statistical approach. The technique utilizes
time-series information to understand the changes in the floodplain to generalize the
rating curve. The method is modular; choices for different components can be switched,
added, or removed. To ensure the robustness and generalizability of the process, we
applied the method to fifteen stations in Cambodia and ten stations in the US; we found
comparable results. In Cambodia, we obtained overall Kling Gupta Efficiency (KGE) of
99% & an average Relative Root Mean Squared Error (RRMSE) of 12% with an average
Mean Absolute Error (MAE) of 200 m3/s. In the US, overall KGE was 97%, with an average
RRMSE of 17% and an average MAE of 32 m3/s. In many stations, we noticed the change
in the rating curve over time, confirming the general phenomenon in hydrology. We
found that the method had lower RRMSE at high flow records compared to mid and low
flow records, despite having higher MAE because of large flow and seasonal variations in
discharge. The distribution of the data points also affected the performance. Similarly, the
effect of precipitation and the reversal flow between Tonle Sap Lake (TSP) and the Mekong
River was discussed. We also found that the time series approach has higher probability in
capturing the high-end and low-end events compared to the traditional method, which
usually use few data points and can be considered a built-in extrapolation feature in the
time series approach. We generalized the parameters across the country; however, the
accuracy can be further increased if the parameters were tweaked per station basis. In
addition, we discussed some of the limitations of the method and provided suggestions
on taking the research to operational mode and improving the model’s accuracy. In a
nutshell, the time series-based process has valuable information to update the rating curve,
especially in a data-scarce environment.
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Appendix A. Result of 95% Prediction Intervals

Table A1. The table presents the number of records before and after applying the 95% PI to the station
records. On average, 5.0% of the data were removed.

Station # Points Before PI # Points After PI % Change

Battambang 2344 2136 8.9
Chaktomuk 11,941 11,445 4.2
Kg. Thmar 2462 2330 5.4
Koh Khel 3653 3626 0.7

Kompong Cham 15,706 15,331 2.4
Kompong Chen 1807 1693 6.3
Kompong Kdei 1592 1487 6.6

Kompong Thom 11,302 10,507 7.0
Kratie 21,331 20,112 5.7

Lumphat 8679 8139 6.2
Neak Luong 10,449 9850 5.7

Siempang 1730 1730 0.0
Sisophon 1384 1311 5.3

Stung Treng 40,543 39,114 3.5
Voeun Sai 8375 7722 7.8

Average Change (%) 5.0

https://portal.mrcmekong.org/
https://waterservices.usgs.gov/rest/
https://waterservices.usgs.gov/rest/
https://github.com/biplovbhandari/ddrc-repo
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Appendix B. Full Time Series Plot of Cambodia
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Figure A1. Cont.
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Figure A1. Predicted and observed discharge for Cambodia. For visualization purposes, the data are
downsampled into a weekly bin, and the mean values of the discharge failing into the bins for the
station are shown.
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Appendix C. Full Time Series Plot of the US
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Figure A2. Predicted and observed discharge for the US. For visualization purposes, the data are
downsampled into a weekly bin, and the mean values of the discharge failing into the bins for the
station are shown.

Appendix D. Plot of Precipitation and Discharge
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Figure A3. Plot of precipitation taken from CHIRPS [73] and the observed discharge. For visualization
purposes, the data are downsampled into a weekly bin, and the mean values are shown. The left
y-axis is for discharge (blue plot), and the right y-axis is for precipitation (orange plot).
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Figure A4. Plot of precipitation taken from CHIRPS [73] and the observed discharge. For visualization
purposes, the data are downsampled into a weekly bin, and the mean values are shown. The left
y-axis is for discharge (blue plot), and the right y-axis is for precipitation (orange plot).
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