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WEAKLY UNCONDITIONALLY CONVERGENT SERIES
IN M-IDEALS

GILLES GODEFROY AND PAULETTE SAAB*

Abstract.

Every Banach space X which is an M-ideal in its bidual has the proprty (V) of Pelczynski. If E is
separable complex Banach space with the approximation property and K(E) is an M-ideal in L(E),
then E is isomorphic to a complemented subspace of a space with a shrinking unconditional finite
dimensional decomposition.

Introduction.

The concept of an M-ideal has been introduced by Alfsen and Effros in 1972
([1], [2]) and has attracted a lot of attention since then (see e.g. [4], [17], [28]).
The present work is a contribution to the study of their structure in Banach
spaces and Banach algebras. We first show that if a Banach space X is an M-ideal
in its bidual X** then X has the property (V) of Pelczynski [30], that is if
T:X — Eisanon weakly compact operator from X into a Banach space E, then
X contains a subspace Y isomorphic to ¢, such that the restriction of T to Y isan
isomorphism between Y and T(Y). We use different techniques for showing that
if E is a separable complex Banach space and K(E) is an M-ideal in L(E), then an
operator Te L(E**) is a conjugate operator if and only if it is the weak*-sum of
a weakly unconditionally convergent series of compact operators of K(E); this
applies of course to the identity operator, and this permits to show that if E is
separable complex Banach space with the approximation property and K(E) is
an M-ideal in L(E) then E is isomorphic to a complemented subspace of a space
with a shrinking unconditional finite dimensional decomposition. We also show
that if a separable complex space E is reflexive and K(E) is an M-ideal in L(E),
then K(E) has the property (u) of Petczynski.
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early versions of this paper.
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NoTtATIONS. The Banach spaces we consider are real or complex. The space of
compact (resp. bounded) linear operators on a Banach space E is denoted by
K(E) (resp. L(E)). The closed unit ball of a Banach space X will be denoted by X,
and the unit sphere is S;(X). A weakly unconditionally convergent series is
a sequence (x,),>; in X such that

Y Iy*(x)l < o for every y*eX*.

n=1
It is an easy consequence of the uniform boundedness principle that this
condition is equivalent to
sup ”Z&’%” < 0,
where the supremum is taken over the finite sequences of ¢; with |¢;| = 1.

Since the sequence S, = Z x; is clearly weakly Cauchy, we can let

i=1
* . .
Y7 x, = lim S, in (X**, weak*).
n-=* oo

A space X is said to have property (u) [30] if every ze X** which is in the
sequential closure of X in (X**, weak*) may be written

z=Y"x,

where (x,), > ; is a weakly unconditionally convergent series in X. A subspace X of
a Banach space E is an M-ideal in E if there exists a subspace Z of E* such that
E* = X+ @, Z, where X* denotes the annihilator of X in E*, and @, means
lu + vl = |lul| + ||v|| for every ue X* and every ve Z. The conjugate of an
operator T is denoted by T*, and we note T** = (T*)*. All subspaces we
consider are supposed to be norm closed.

Results.

Our first result was announced in [11].

THEOREM 1. Let X be a Banach spce which is an M-ideal in its bidual X**. Then
X has the proprty (V) of Pelczynski.

ProOOF. We consider the set
D = {ze X**||z| = 1 = dist(z, X)}.

Since X is proximinal in X** [18], the linear span of (X u D) is X**. Hence if
T:X - Y is a non weakly compact operator, there exists ze D such that
T**(z)¢ Y. We let o = dist (T**(z), Y) > 0, and pick (0, ).
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We stop now to prove the following lemma

LEMMA 2. For every finite subset (x;); <;<, of X with || x;|| < 1 for 1 £i < n, there
exists xe X such that ||x|| < 1, |x — x;| <1 for 1 £i < nand |T(x)| > e.

PROOF OF LEMMA 2. Pick # > 0 such that (1 + »)||x;|| < 1for 1 £i < nand
¢ < a(l 4+ n)~2. For ze D such that dist(T**(z), Y) = « > 0, let

P(z) = {xeX ||z — x|| = 1}.

The set P(z) is a pseudo ball [4] and thus there exists x,e P(z) such that
(xo + (1 + n)x;)e P(z) for 1 < i < n[4]. Since x,€ X, we have

[T**(z — xo)ll 2 dist(T**(z),Y) = o,
hence there exists ye Y* with | y|| = 1 such that
(T**(z = Xo),y) = <z — X0, T*y)> > o1 + 1)~ ".

Let V be the linear span of {z, xq, x,,...,X,}; by the local reflexivity principle
[22], there is an operator A: V — X such that

@) 141 <1 +n.
(ii) A(u) = uforeveryueVn X.
(ii) <A@z = xo0), T*(y)) > ol + 1)~ "

We let now
x=(1+n"1Az — x,)
This element x works; indeed
Ixll < (1 +m~ Al llz = xll < 1
Moreover, for 1 £ i < n, we have
lz—xo = (1 +mx;fl =1
and thus
[A(z — xo) = (1 + mxifl < 1 + 1,
which implies that || x — x;|| < 1; finally, the condition (iii) implies
G THY) = <TX),y> > al + )72 > ¢
and therefore
ITX) > e.

Let us now resume the proof of Theorem 1. Since || T**(z)|| > ¢, thereexists uge X
with |lup| < 1and || T(u,)|| > & We apply the lemma 2 to the family {uy, —u,} to
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find u, € X with

(i) lurll < 1, flug + uyll < 1, fluy — uoll < 1
and

(i1) 1Ty > e

We apply now the lemma 2 to
{eouo + eyuy e = +1,

and we continue in this way to construct by induction a sequence (1;); » , such that

(i S e
i=1

<1 Vn and Vg, = +1

and
(i) I Tl > ¢ Vi

the result follows easily.
Let us observe that the above proof is making a crucial use of the techniques of
[4] and [17].

REMARKS 3.

1) If X isan M-ideal in its bidual, then X* is weakly sequentially complete [ 12]
and since, by Theorem 1 X has (V), this implies that every operator from X to X'*
is weakly compact. In particular if X a Banach algebra, then X is Arens-regular
[13].

2) If X has(V), then X* has (V*) [30] and thus by Theorem 2, if Y is such that
Y** = Y @, Y, with Y, weak* closed, then Y has the property (V*). It is an open
question to know whether the assumption put on Y, to be weak* closed is actually
necessary.

3) Thespace X = (). ® I,)., is an M-ideal in its bidual; however X** contains
a complemented copy of I' [19] and thus X** does not have the property (V).

4) Itis an open question to know whether a separable Banach space that is an
M-ideal in its bidual has the property (u); This question will be answered below in
the affirmative in an important special case (Corollary 8), see: Added in proof.

We will now prove a structural theorem for the complex spaces E such that
K(E) is an M-ideal in L(E). Let us state our main result.

THEOREM 4. Let E be separable complex Banach space such that K(E) is an
M-ideal in L(E). Then K(E)** is canonically isometric to L(E**) and for Te L(E**)
the following are equivalent:

1) There exists T, € L(E*) such that T = T.
2) There is a sequence (K,),> , in K(E) such that:
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(i) 1Y &Kl < M for every finite sequence of || = 1.

0

(il) <T(2),y> = Y, <z,K}y) VyeE* and VzeE**.

n=1

Proor. If K(E) is an M-ideal in L(E), then E and E* have the compact
approximation property (C.A.P)[17] and E* has the Radon Nikodym Property
(RNP). The Feder-Saphar technique [9] permits to show that K(E)** is canoni-
cally isometric to L(E**) [14]; where canonical means that the diagram

LE) —=— L(E*¥)
| I
K(E) —— K(E)**
is commutative, where i and j are the canonical injections, I is the isometry and
t¥¥(T) = T**.

Let us now proceed to the proof of the equivalence. To show that 1) implies 2)
we need to prove the following crucial lemma which relies heavily on ([28],
lemma 2.4.).

LEMMA 5. Let A be a complex Banach algebra with unit e. Let X be a separ-
able subspace of A which is an M-ideal in A; if we write A* = X* @, Y, then there
is a weakly unconditionally convergent series (x,),> , in X such that

o)

ey)= Y x,(y) VyeY.

n=1

PrOOF. Let
S={yed*|lyl =1=yle}}
be the state space of 4. Since X is an M-ideal in 4, the sets
F=X'*nSand F=YnS

form a pair of split faces of S such that § = conv (F U F’)and moreover X *, (resp.,
Y) is algebraically spanned by F (resp., F '), [28]. Let

IT: A*->Y

be the projection having as kernel X+, and let z = IT*(e) e A**. It is clear that
zr =0 and zp = 1. Since S = conv(F U F’) we have 0 <z <1 on § and for
every A€[0,1] the set

Si=8nz"'(—o,4])
may be written

S,={ut+Q—pt'|teF,t'eS,\1 —Aspus1}.
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Since F is w*-compact, the set S; is w*-closed. The projection IT is continuous
from (A*, w*) to (Y, a(Y, X)) and therefore the set S, = I1(S) is o(Y, X)-compact.
Moreover since z = eo Il = IT*(e) we have 0 < z < 1 on S, and

Sonz™ (=0, 4]) = I1(S,),

and this shows that z is lower semi-continuous on (S, a(Y, X)); therefore there
exists an increasing sequence (f,),»; of continuous functions on (S,,s(Y, X))
which converges pointwise to z; in particular we have

i) X 1) <o VyeS,,
n=1

i) 20) = 3 £i(») VyeSo.
n=1

But we also have ze X+ and a fortiori z belongs to the pointwise closure on S, of
X . Hence by a classical lemma (see [24], p. 32) there is a sequence (x,),>, in X,
such that

(i) Y 14,0 <o VyeS,,

n=1

o

(iv) z2(y) = X x,(y) VyeS,.
n=1
The numerical radius defines an equivalent norm on A4 [3], thus A* = span(S)
and Y = span(S,); hence the conditions (iii) and (iv) hold also for ye Y; this
finishes the proof of the lemma since z(y) = e(y) VyeY.

Let us now proceed to the proof of Theorem 4. We apply Lemma 5to 4 = L(E)
and X = K(E). For every ye E* and every ze E** with |y|| = ||z|| = 1, let us
consider the linear form z ® y in L(E)* where

(z®y, Ty =<z, Ty,

clearly
lz® yll = 1in L(E)*,
but also in
K(Ey* = L(E)*/K(E)".
Hence if
L(E)* = K(E)* ®, Y
. we have

z@yeYif |yl izl =1
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and thus
z®yeY forevery ye E* and ze E**
Hence by Lemma 5, there is a sequence (S,),> in K(E) such that
||Z eSil =M

for every finite sequence |¢;| = 1, and such that

oo

(*) {z,y> = Y, (z,8¥(y)) VyeE* and Vze E**;
n=1

consider now T € L(E**) such that there is Ty € L(E*) with T = T and apply (*)
to z = T(2') to get

KT(Z),y) = i (T(z),S*(y)> VyeE* and Vz' e E**

n=1

and thus

(TE)y> = ¥ & ToSHOD,
n=1
but since S} is compact, it is weak* to norm continuous on bounded sets and so is
T,S¥, hence T,S* is weak* to weak* continuous and compact and thus there
exists K, € K(E) such that K} = T, S*. Finally we have

"ZEiKi" = "ZaiK.'*"
= I & TSt
STl Iy &Skl
< | ToIM,

and this concludes the proof of 1) implies 2) in Theorem 4.

Conversely, we will prove a much stronger result than 2) implies 1), namely if
there exists a sequence (V,),»; in L(E*) such that

(%) (T(2),y> = lim {z, V,(y)) Vye E* and Vze E**,

n— oo

then there is T, € L(E*) such that T3 = T. Indeed (x) implies that

T*(y) = lim V,(y) in (E***, weak®),
but K(E) being M-ideal in L(E) implies that E is an M-ideal in E** [21] and thus
E* is weakly sequentially complete [12]; hence T*(y)e E* and if we define T to
be the restriction of T* to E* we have T = T
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Our first application of theorem 4 is a structural result for the complex spaces
E for which K(E) is an M-ideal in L(E). Let us observe that such a space has
always the metric compact approximation property [17]; it is unknown whether
it has necessarily the approximation property (A.P). Our next result asserts that if
the A.P. holds, then a much stronger property is satisfied.

COROLLARY 6. Let E be a separable complex Banach space such that K(E) is an
M-ideal in L(E). Then the following statements are equivalent:

1) E has the A.P.

2) E has the metric A.P.

3) E* has the A.P.

4) E is isomorphic to a complemented subspace of a space a with a shrinking
unconditional finite dimensional decomposition.

ProoF. Theimplications 4)implies 3) and 2) implies 1) are obvious. To see that
3)implies 2) notice that E* has the RNP and therefore E* has the metric A.P. if it
has A.P. (see [23]); and it is always true that E has the metric A.P. if E* does (see
[23]).

For 1) implies 4), apply Theorem 4, to find a sequence (S,), > ; in K(E) such that
(1) 1Y &S:I <M for every finite sequence of |¢]| = 1
(ii) <z,y) = Y, (z,S¥y) VyeE* and ze E**.

n=1

Since E has the A.P. there exists a sequence (R,),; of finite rank operators

such that

IS, — Ryl <271

Following the lines of ([27], proposition 3), we observe that for every x € E, the
series

*
S(x) = 3." R,(x)
is weakly unconditionally convergent and thus defines an operator from E into

E**; but S actually takes its value in E; indeed for every N, we have

YR — Y Six)

i>N i>N

< lixll Y IR = Sil

i>N

< flxg2=

and thus

N N
S(x)— Y Ri(x) —x+ Y Six)|| < lIx27V74,
n=1 n=1

which shows that

dist (S(x), E) < [|x[|27¥ ! for every N
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and thus S(x)e E. Moreover we clearly have that |Id; — S| £ 27! and thus

S = U~ ! is an invertible operator; if we consider now the finite rank operators
U, = UR, we have:

x= ) Ulx) VxeE
n=1
and the convergence is unconditonal. In other words E has the unconditional
approximation property (in the terminology of [8]). Thus by [31], the space E is
isomorphic to a complemented subspace of the unconditional sum [31]

X =Y U, (E).

For completing the prooflet us observe that E is an M-ideal in E** [21] and thus
E is an Asplund space; that is E is an Asplund complemented subspace of a space
X which has an unconditional finite dimensional decomposition. Under these
assumptions, it is possible [20] to adapt the proof of Theorem 3.3 of [10] to show
that E is isomorphic to a complemented subspace of a space with a shrinking
unconditional finite dimensional decomposition: in the notation of ([10], with
E = A(Z)), one needs to observe that the set

k

W = conv {( Y s,,P,.>E1 le,e{—1,1}N k2 1}
n=1

where the P,’s are the “coordinate projections” associated with the finite dimen-

sional decomposition is weak *-sequentially compact and apply the interpolation
techique of [5].

REMARKS 7.

1) The above condition 4) implies in particular that E* is complemented in
a space with an unconditional boundedly complete finite dimensional decompo-
sition.

2) If moreover E is reflexive, we can show like in ([10], Theorem 3.3) that E is
isomorphic to a complemented subspace of a reflexive space with an uncondi-
tional finite dimensional decomposition. It suffices indeed to reproduce th above
proof and to observe [20] that the corresponding set W is weakly compact.

In the case where E is reflexive we obtain without assuming the A.P. the
following corollary:

COROLLARY 8. Let E be a separable reflexive complex Banach space such that
K(E) is and M-ideal in L(E). Then K(E) has the property (u).

PRrROOF. By [17], K(E)** is canonically isometric to L(E). By Theorem 4, there
exists a sequence (K,),», in K(E) such that
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)

Z SiKi“ é M Vlﬁil = 1, Vn g l
i=1

(i) x> =Y <pK,(x)) VxeX, and Vye X*

n=1
Condition (ii) means that Id; = Z* K, in K(E)** = L(E): if now T € L(E) is any
operator, then we have

T=Y"TK,=Y"S5,

since the multiplication in L(E) is weak*-separately continuous if E is reflexive;
and it is clear that S, e K(E) and the S,’s satisfy condition (i).

Examples, remarks and questions.

1) Itis easy to deduce from the resuls of [8] and [14] that if X has a shrinking
unconditional finite dimensional decomposition such that the weak* and the
weak topology coincide on the unit sphere S,(X*) of X* and E is a subspace of
X then saying that E has the approximation property is equivalent to saying that
E* has the metric approximation property and this in turn is equivalent to
asserting that E has the unconditional approximation property.

2) Let A be asubset of an abelian discrete group I' = G;let ¢ = 4(G)and A’ be
the complement of (— A) in T, then the following statements were shown to be
equivalent in [15]:

(i) €/%,. is an M-ideal in its bidual.
(ii) The unit ball B, of L!,(G) is closed for the topology t of convergence in
measure, and the Fourier coefficients %, (f) = f(«) are continuous on (B 4, 7).

It is not known if these M-ideals have the property (u) in general. This is true if
I' = Z and A = N since 4(T)/A,(D) is isometric to a subspace of K(l,) [15], see:
Added in proof.

Observe that the convolution induces a structure of Banach algebra on €/%,,
since € 4. is an ideal of (¥, *), but the bidual space [°/L%. has no unit in general.

3) If X is a separable complex Banach algebra such that:

a) X is an M-ideal in its bidual X**

b) X is an ideal of the algebra X**

¢) X**is a Banach algebra with unit

then it is easy to deduce from Lemma 5 that X has the property (u). We do not
know whether the statement a) implies the statement b); this is true if X is
commutative [29], see: Added in proof.

4) Any space which has an unconditional finite dimensional decomposition is
a subspace of a space with an unconditional basis ([23] Theorem 1.g.5), hence by
Corollary 6 and [10], any separable complex Banach space with the approxi-
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mation property such that K(E) is an M-ideal in L(E) is a subspace of a space
X with a shrinking unconditional basis. If moreover E is reflexive, the space
X can be taken reflexive as well.

5) On which separable spaces E does there exist an equivalent norm such that
K(E) is an M-ideal in L(E) when L(E) is equipped with the operator norm?
Observe that by Corollary 6 and [26] (resp. [23]) the spaces

E=1,®l,;,1<p<2
(resp.)
F=QeL"m,

which are reflexive spaces with basis, do not admit such a renorming. Note also
that if a complex space E is reflexive, separable and K(E) is an M-ideal in L(E),
then Corollary 8 permits to show easily that K(E)* = E* ® E has the property
(X) [16] or equivalently K(E)* <[, in Edgar’s ordering [6].

6) If E = 1,, let N(E) be the space of nuclear operators on E. it is well known
that N(E) = K(E)* = E® E; let H be the subspace of “uper triangular oper-
ators”, that is the closed linear span of {e; ® e;|j = i} where (e,),>, the usual
basis of E. It is easily seen that H is weak* closed in K(E)*, hence N(E)/H = (H™)*
and sine H™ is a subspace of K(E) which has the property (u), H" has (u) as well;
therefore N(E)/H has (X) (see [6] and [16]), so it has (V*) and hence it is weakly
sequentially complete; actually the space N(E)/H shares most of the infinite
dimensional geometrical properties of its “commutative relative” L'(T)/H*(D).

7) If E is an M-ideal in E** and thus if K(E) is an M-ideal in L(E) then E is
weakly compactly generated [ 7]. Hence the assumptions of separability we made
can be deleted mutatis mutandis with standard but tedious technicalities.

8) If A is a real Banach algebra, the state space S does not separate A4 in
general; a classical example is 4 = I3 ® I2. Hence for being able to apply ou
crucial Lemma 5, we have to limit ourselves to the complex situation. This
restriction is probably unnecessary; however, it seems technically uneasy to
complexify the Banach algebras we are using while respecting the M-ideal
structure.

ADDED IN PROOF. After this paper was accepted, D. Li and the first-named
author showed that any M-ideal in its bidual has property u (Ann. Inst. Fourier
39(1989), 361-371). It follows in particular that our results on K(E) are still valid
it E is a real Banach space.
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