Skip to main content

Advertisement

Log in

Modeling geomechanical impact of fluid storage in poroelastic media using precomputed response functions

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

When injecting CO2 or other fluids into a geological formation, pressure plays an important role both as a driver of flow and as a risk factor for mechanical integrity. The full effect of geomechanics on aquifer flow can only be captured using a coupled flow-geomechanics model. In order to solve this computationally expensive system, various strategies have been put forwards over the years, with some of the best current methods based on sequential splitting. In the present work, we seek to approximate the full geomechanical effect on flow without the need of coupling with a geomechanics solver during simulation, and at a computational cost comparable to that of an uncoupled model. We do this by means of precomputed pressure response functions. At grid model generation time, a geomechanics solver is used to compute the mechanical response of the aquifer for a set of pressure fields. The relevant information from these responses is then stored in a compact form and embedded with the grid model. We test the accuracy and computational performance of our approach on a simple 2D and a more complex 3D model, and compare the results with those produced by a fully coupled approach as well as from a simple decoupled method based on Geertsma’s uniaxial expansion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen, O., Gasda, S., Nilsen, H.: Vertically averaged equations with variable density for CO2 flow in porous media. Transp. Porous Media pp. 1–33 (2014) doi:10.1007/s11242-014-0427-z

  2. Andersen, O.A., Nilsen, H.M., Gasda, S.E.: Vertical equilibrium flow models with fully coupled geomechanics for CO2 storage modeling, using precomputed mechanical response functions. submitted to Energy Procedia 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13 (2017)

    Google Scholar 

  3. Aruffo, C., Rodriguez-Herrera, A., Tenthorey, E., Krzikalla, F., Minton, J., Henk, A.: Geomechanical modelling to assess fault integrity at the CO2CRC Otway project, Australia. Aust. J. Earth Sci. 61(7), 987–1001 (2014)

    Article  Google Scholar 

  4. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941). doi:10.1063/1.1712886

    Article  Google Scholar 

  5. Bissell, R., Vasco, D., Atbi, M., Hamdani, M., Okwelegbe, M., Goldwater, M.: A full field simulation of the In Salah gas production and CO2 storage project using a coupled geo-mechanical and thermal fluid flow simulator. Energy Procedia 4, 3290–3297 (2011)

    Article  Google Scholar 

  6. Bjørnarå, T. I., Nordbotten, J.M., Park, J.: Vertically integrated models for coupled two-phase flow and geomechanics in porous media. Water Resour. Res. 52(2), 1398–1417 (2016). doi:10.1002/2015WR017290

    Article  Google Scholar 

  7. Cappa, F., Rutqvist, J.: Impact of CO2 geological sequestration on the nucleation of earthquakes. Geophys. Res. Lett. 38(17). doi:10.1029/2011GL048487 (2011)

  8. Cappa, F., Rutqvist, J.: Seismic rupture and ground accelerations induced by CO2 injection in the shallow crust. Geophys. J. Int. 190(3), 1784–1789 (2012)

    Article  Google Scholar 

  9. Celia, M.A., Bachu, S., Nordbotten, J.M., Bandilla, K.W.: Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations. Water Resour. Res. 51(9). doi:10.1002/2015WR017609 (2015)

  10. Darcis, M.Y.: Coupling models of different complexity for the simulation of CO2 storage indeep saline aquifers (2013)

  11. Davies, J., Davies, D., et al.: Stress-dependent permeability: characterization and modeling SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1999)

    Google Scholar 

  12. Dean, R.H., Gai, X., Stone, C.M., Minkoff, S.E., et al.: A comparison of techniques for coupling porous flow and geomechanics. Spe Journal 11(01), 132–140 (2006)

    Article  Google Scholar 

  13. Eiken, O., Ringrose, P., Hermanrud, C., Nazarian, B., Torp, T.A., Høier, L.: Lessons learned from 14 years of CCS operations: Sleipner, In Salah and Snøhvit. Energy Procedia 4, 5541–5548 (2011). doi:10.1016/j.egypro.2011.02.541. 10th International Conference on Greenhouse Gas Control Technologies

    Article  Google Scholar 

  14. Gain, A.L., Talischi, C., Paulino, G.H.: On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282, 132–160 (2014)

    Article  Google Scholar 

  15. Gambolati, G., Lewis, R.W., Schrefler, B.A., Simoni, L.: Comment on ‘coupling versus uncoupling in soil consolidation’. Int. J. Numer. Anal. Methods Geomech. 16 (11), 833–837 (1992). doi:10.1002/nag.1610161105

    Article  Google Scholar 

  16. Gasda, S., Darcis, M., White, M., Flemish, B., Class, H.: Geomechanical behavior of CO2 storage in saline aquifers (GeoCoSA): benchmark problem description. https://www.sintef.no/projectweb/matmora/workshops/ (2013)

  17. Gasda, S.E., Nilsen, H.M., Dahle, H.K.: Impact of structural heterogeneity on upscaled models for large-scale CO2 migration and trapping in saline aquifers. Advances in Water Resources. http://www.sciencedirect.com/science/article/pii/S0309170813000833 (2013)

  18. Gasda, S.E., Nordbotten, J.M., Celia, M.A.: Vertically averaged approaches for CO2 migration with solubility trapping. Water Resour. Res. 47(5). doi:10.1029/2010WR009075 (2011)

  19. Girault, V., Kumar, K., Wheeler, M.F.: Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium. Tech. rep., Technical Report ICES REPORT 15-05, The Institute for Computational Engineering and Sciences The University of Texas at Austin, Austin, Texas, 78712 (2015)

  20. Kim, J.: Sequential Methods for Coupled Geomechanics and Multiphase Flow. Ph.D. thesis, Stanford University (2010)

  21. Klemetsdal, Ø. S.: The virtual element method as a common framework for finite element and finite difference methods. Master’s thesis, Norwegian University of Science and Technology (2016)

  22. Lewis, R., Schrefler, B., Simoni, L.: Coupling versus uncoupling in soil consolidation. Int. J. Numer. Anal. Methods Geomech. 15(8), 533–548 (1991)

    Article  Google Scholar 

  23. Longuemare, P., Mainguy, M., Lemonnier, P., Onaisi, A., Gérard, C., Koutsabeloulis, N.: Geomechanics in reservoir simulation: overview of coupling methods and field case study. Oil Gas Sci Technol 57(5), 471–483 (2002)

    Article  Google Scholar 

  24. Mikelić, A., Wheeler, M.F.: Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 17(3), 455–461 (2013)

    Article  Google Scholar 

  25. MRST: The MATLAB reservoir simulation toolbox (2015). http://www.sintef.no/MRST

  26. Nilsen, H.M., Lie, K.A., Andersen, O.: Analysis of CO2 trapping capacities and long-term migration for geological formations in the Norwegian North Sea using MRST-co2lab. Comput. Geosci. 79, 15–26 (2015). doi:10.1016/j.cageo.2015.03.001

    Article  Google Scholar 

  27. Nilsen, H.M., Lie, K.A., Andersen, O.: Fully implicit simulation of vertical-equilibrium models with hysteresis and capillary fringe. Comput. Geosci. (2015). doi:10.1007/s10596-015-9547-y

  28. Nordbotten, J.M., Celia, M.A.: Geological Storage of CO2: Modeling Approaches for Large-scale Simulation. Wiley, New Jersey (2012)

    Google Scholar 

  29. Nordbotten, J.M., Dahle, H.K.: Impact of the capillary fringe in vertically integrated models for CO2 storage. Water Resour. Res. 47(2), W02,537 (2011). doi:10.1029/2009WR008958

    Article  Google Scholar 

  30. Ouellet, A., Bérard, T., Desroches, J., Frykman, P., Welsh, P., Minton, J., Pamukcu, Y., Hurter, S., Schmidt-Hattenberger, C.: Reservoir geomechanics for assessing containment in CO2 storage: a case study at Ketzin, Germany. Energy Procedia 4, 3298–3305 (2011)

    Article  Google Scholar 

  31. Pettersen, Ø.: Coupled flow and rock mechanics simulation: optimizing the coupling term for faster and accurate computation. Int. J. Numer. Anal. Model. 9(3), 628–643 (2012)

    Google Scholar 

  32. Preisig, M., Prévost, J. H.: Coupled multi-phase thermo-poromechanical effects. Case study: CO2 injection at In Salah, Algeria. Int. J. Greenhouse Gas Control 5(4), 1055–1064 (2011)

    Article  Google Scholar 

  33. Raynaud, X., Krogstad, S., Nilsen, H.M.: On the use of the virtual element method for geomechanics on reservoir grids ECMOR XV – 15 th European Conference on the Mathematics of Oil Recovery, Amsterdam, Netherlands, 29 August - 1 September 2016. EAGE (2014)

    Google Scholar 

  34. Rutqvist, J.: The geomechanics of CO2 storage in deep sedimentary formations. Geotech. Geol. Eng. 30 (3), 525–551 (2012). doi:10.1007/s10706-011-9491-0

    Article  Google Scholar 

  35. Rutqvist, J., Birkholzer, J., Cappa, F., Tsang, C.F.: Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Convers. Manag. 48(6), 1798–1807 (2007)

    Article  Google Scholar 

  36. Rutqvist, J., Tsang, C.F.: A study of caprock hydromechanical changes associated with CO2-injection into a brine formation. Environ. Geol. 42(2), 296–305 (2002). doi:10.1007/s00254-001-0499-2

    Article  Google Scholar 

  37. Rutqvist, J., Vasco, D.W., Myer, L.: Coupled reservoir-geome- chanical analysis of CO2 injection and ground deformations at In Salah, Algeria. Int. J. Greenhouse Gas Control 4(2), 225–230 (2010)

    Article  Google Scholar 

  38. Settari, A., Walters, D.: Advances in coupled geomechanical and reservoir modeling with applications to reservoir compaction. SPE J. 6 (2001). doi:10.2118/74142-PA

  39. Settari, A., Mourits, F.: A coupled reservoir and geomechanical simulation system. SPE J. 3 (1998). doi:10.2118/50939-PA

  40. SINTEF ICT: The MATLAB reservoir simulation toolbox: numerical CO2 laboratory (2014). http://www.sintef.no/co2lab

  41. Tillner, E., Shi, J.Q., Bacci, G., Nielsen, C.M., Frykman, P., Dalhoff, F., Kempka, T.: Coupled dynamic flow and geomechanical simulations for an integrated assessment of CO2 storage impacts in a saline aquifer. Energy Procedia 63, 2879–2893 (2014)

    Article  Google Scholar 

  42. Verdon, J.P., Kendall, J.M., Stork, A.L., Chadwick, R.A., White, D.J., Bissell, R.C.: Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and In Salah. Proc. Natl. Acad. Sci. 110(30), E2762–E2771 (2013)

    Article  Google Scholar 

  43. Wang, H.F.: Theory of Linear Poroelasticity. Princeton Series in Geophysics. Princeton University Press, Princeton (2000)

    Google Scholar 

Download references

Acknowledgments

This work was funded by the MatMoRa-II project, contract no. 21564, sponsored by the Research Council of Norway and Statoil ASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odd Andersen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersen, O., Nilsen, H.M. & Gasda, S. Modeling geomechanical impact of fluid storage in poroelastic media using precomputed response functions. Comput Geosci 21, 1135–1156 (2017). https://doi.org/10.1007/s10596-017-9674-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-017-9674-8

Keywords

Navigation