Skip to main content

Advertisement

Log in

Anticorrosive Effect of the Size of Silica Nanoparticles on PMMA-Based Hybrid Coatings

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Some public institutions in Mexico are combining corrosion research with environmental considerations. Therefore, our research group approached the specific goal of developing new corrosion-resistant materials (paints or coatings) for marine environments, where wave energy is obtained. Hybrid coatings were prepared using polymethylmethacrylate (PMMA) filled with silicon dioxide nanoparticles to protect steel in highly corrosive marine environments. The materials were selected by a multidisciplinary group, considering cost, ease of processing, scalability and environmental impact. Coating design was based on the study of physical and structural variables modifications instead of chemical variables or complex assemblies based on multiple materials. ASTM D 4541-09 was performed to evaluate adhesion between PMMA coating and hybrid PMMA-SiO2 nanoparticles coating on carbon steel and stainless steel. Results showed that the SiO2 nanoparticles and PMMA act synergistically to enhance anticorrosive performance. Corrosion resistance properties of the hybrid coatings are related with the sizes of SiO2 nanoparticles added to the polymeric matrix. This effect showed that the smallest nanoparticle size implies the highest protection against corrosion. Functionalized nanoparticles with 3-aminopropyl triethoxysilane increased anticorrosive and adhesion properties. In conclusion, it was possible to obtain a functional hybrid coating for steel corrosion-protection in highly corrosive marine environments, using the less environmental impact materials required by biology experts’ guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Worldsteel, World Steel Association. Steel Statistical Yearbook 2018, WorldSteel Assoc., 2018, 1(November), p 121, https://www.worldsteel.org/steel-by-topic/statistics/steel-statistical-yearbook.html.

  2. I. Standard, Iso 12944-2, 2002.

  3. G.H. Koch, M.P.H. Brongers, and N.G. Thompson, “Corrosion Costs and Preventive Strategies in the United States,” NO. FHWA-RD-01-156 Authors, 2002, http://impact.nace.org/documents/ccsupp.pdf.

  4. A. Felix, J.V. Hernández-Fontes, D. Lithgow, E. Mendoza, G. Posada, M. Ring, and R. Silva, Wave Energy in Tropical Regions: Deployment Challenges, Environmental and Social Perspectives, J. Mar. Sci. Eng, 2019, 7(7), p 219. https://doi.org/10.3390/jmse7070219

    Article  Google Scholar 

  5. J.K. Saha, Engineering Materials-Corrosion of Constructional Steels in Marine and Industrial Environment, Nature, 2013, https://doi.org/10.1007/978-81-322-0720-7

    Article  Google Scholar 

  6. P.A. Sørensen, S. Kiil, K. Dam-Johansen, and C.E. Weinell, Anticorrosive Coatings: A Review, J. Coatings Technol. Res., 2009, 6(2), p 135–176

    Article  Google Scholar 

  7. A. Trentin, A. de L. Gasparini, F.A. Faria, S. V. Harb, F.C. dos Santos, S.H. Pulcinelli, C. V. Santilli, and P. Hammer, Barrier Properties of High Performance PMMA-Silica Anticorrosion Coatings, Prog. Org. Coatings, 2020, 138(October 2019), p 105398, https://doi.org/10.1016/j.porgcoat.2019.105398.

  8. J. Maya-Cornejo, F.J. Rodríguez-Gómez, G.A. Molina, J. Galindo-de-la-Rosa, J. Ledesma-García, A.R. Hernández-Martínez, R. Esparza, R. Pérez, and M. Estévez, Electrochemical Study of a Hybrid Polymethyl Methacrylate Coating Using SiO2 Nanoparticles toward the Mitigation of the Corrosion in Marine Environments, Materials (Basel), 2019, 12(19), p 3216. https://doi.org/10.3390/ma12193216.

    Article  CAS  Google Scholar 

  9. M. Norouzi and A. Afrasiabi Garekani, Corrosion Protection by Zirconia-Based Thin Films Deposited by a Sol-Gel Spin Coating Method, Ceram. Int., 2014, 40(2), p 2857–2861. https://doi.org/10.1016/j.ceramint.2013.10.027

    Article  CAS  Google Scholar 

  10. F.C. Dos Santos, S.V. Harb, M.J. Menu, V. Turq, S.H. Pulcinelli, C.V. Santilli, and P. Hammer, On the Structure of High Performance Anticorrosive PMMA-Siloxane-Silica Hybrid Coatings, RSC Adv., 2015, 5(129), p 106754–106763

    Article  Google Scholar 

  11. L. Floroian, C. Samoila, M. Badea, D. Munteanu, C. Ristoscu, F. Sima, I. Negut, M.C. Chifiriuc, and I.N. Mihailescu, Stainless Steel Surface Biofunctionalization with PMMA-Bioglass Coatings: Compositional, Electrochemical Corrosion Studies and Microbiological Assay, J. Mater. Sci. Mater. Med., 2015, 26(6), p 1–14

    Article  CAS  Google Scholar 

  12. X. Xu, Z. Zhang, F. Guo, J. Yang, and X. Zhu, Fabrication of Superhydrophobic Binary Nanoparticles/PMMA Composite Coating with Reversible Switching of Adhesion and Anticorrosive Property, Appl. Surf. Sci., 2011, 257(16), p 7054–7060. https://doi.org/10.1016/j.apsusc.2011.02.136

    Article  CAS  Google Scholar 

  13. F. Yang and G.L. Nelson, PMMA/Silica Nanocomposite Studies: Synthesis and Properties, J. Appl. Polym. Sci., 2004, 91(6), p 3844–3850

    Article  CAS  Google Scholar 

  14. L.C. Klein, Sol-Gel Processing of Silicates, Annu. Rev. Mater. Sci., 1985, 15(1), p 227–248. https://doi.org/10.1146/annurev.ms.15.080185.001303

    Article  CAS  Google Scholar 

  15. M.A. Bourebrab, D.T. Oben, G.G. Durand, P.G. Taylor, J.I. Bruce, A.R. Bassindale, and A. Taylor, Influence of the Initial Chemical Conditions on the Rational Design of Silica Particles, J. Sol-Gel. Sci. Technol., 2018, 88(2), p 430–441. https://doi.org/10.1007/s10971-018-4821-9

    Article  CAS  Google Scholar 

  16. S.L. Greasley, S.J. Page, S. Sirovica, S. Chen, R.A. Martin, A. Riveiro, J.V. Hanna, A.E. Porter, and J.R. Jones, Controlling Particle Size in the Stöber Process and Incorporation of Calcium, J. Colloid Interface Sci., 2016, 469, p 213–223. https://doi.org/10.1016/j.jcis.2016.01.065

    Article  CAS  Google Scholar 

  17. X. Wang, Y. Zhang, W. Luo, A.A. Elzatahry, X. Cheng, A. Alghamdi, A.M. Abdullah, Y. Deng, and D. Zhao, Synthesis of Ordered Mesoporous Silica with Tunable Morphologies and Pore Sizes via a Nonpolar Solvent-Assisted Stöber Method, Chem. Mater., 2016, 28(7), p 2356–2362

    Article  CAS  Google Scholar 

  18. W. Stöber, A. Fink, and E. Bohn, Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range, J. Colloid Interface Sci., 1968, 26(1), p 62–69. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  19. M.A. Jarvis and L.A. Testa, Method for the Continuous Solution Polymerization of Methyl Methacrylate, US patent US4933400A, 12 June 1990.

  20. K.G. Suddaby, D.R. Maloney, and D.M. Haddleton, Homopolymerizations of Methyl Methacrylate and Styrene: Chain Transfer Constants from the Mayo Equation and Number Distributions for Catalytic Chain Transfer, and the Chain Length Dependence of the Average Termination Rate Coefficient, Macromolecules, 1997, 30(4), p 702–713. https://doi.org/10.1021/ma9612642

    Article  CAS  Google Scholar 

  21. Aldrich Chemical Company Inc, Applications: Free Radical Initiators Applications: Free Radical Initiators, Extracts, 1999, p 3–4, http://www.sigmaaldrich.com/etc/medialib/docs/Aldrich/Brochure/al_pp_initiators.Par.0001.File.tmp/al_pp_initiators.pdf.

  22. “Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers,” 2002.

  23. M. Hampel, M. Schenderlein, C. Schary, M. Dimper, and O. Ozcan, Efficient Detection of Localized Corrosion Processes on Stainless Steel by Means of Scanning Electrochemical Microscopy (SECM) Using a Multi-Electrode Approach, Electrochem. Commun., 2019, 101(January), p 52–55. https://doi.org/10.1016/j.elecom.2019.02.019

    Article  CAS  Google Scholar 

  24. Z. Ye, Z. Zhu, Q. Zhang, X. Liu, J. Zhang, and F. Cao, In Situ SECM Mapping of Pitting Corrosion in Stainless Steel Using Submicron Pt Ultramicroelectrode and Quantitative Spatial Resolution Analysis, Corros. Sci., 2018, 143, p 221–228. https://doi.org/10.1016/j.corsci.2018.08.014.7

    Article  CAS  Google Scholar 

  25. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 Years of Image Analysis, Nat Methods, 2012, https://doi.org/10.1038/nmeth.2089

    Article  Google Scholar 

  26. T. Matsoukas and E. Gulari, Dynamics of Growth of Silica Particles from Ammonia-Catalyzed Hydrolysis of Tetra-Ethyl-Orthosilicate, J. Colloid Interface Sci., 1988, 124(1), p 252–261

    Article  CAS  Google Scholar 

  27. L. Santo and J.P. Davim, Nanocomposite Coatings: A Review, Mater. Surf. Eng., 2012, p 97–120. https://doi.org/10.1533/9780857096036.97

  28. J.L.V. Caselis, E.R. Rosas, and V.M.C. Meneses, Hybrid PMMA–Silica Anticorrosive Coatings for Stainless Steel 316L, Corros. Eng., Sci. Technol., 2012, 47(2), p 131–137. https://doi.org/10.1179/1743278211Y.0000000035

    Article  CAS  Google Scholar 

  29. J.A. Santana, S.R. Kunst, C.T. Oliveira, A.A. Bastos, M.G.S. Ferreira, and V.H.V. Sarmento, PMMA-SiO2 Organic-Inorganic Hybrid Coating Application to Ti-6Al-4 V Alloy Prepared through the Sol-Gel Method, J. Braz. Chem. Soc., 2020, 31(2), p 409–420. https://doi.org/10.21577/0103-5053.20190198

    Article  CAS  Google Scholar 

  30. J.M. Chovelon, L. El Aarch, M. Charbonnier, and M. Romand, Silanization of Stainless Steel Surfaces: Influence l Application Parameters, J. Adhes., 1995, 50(1), p 43–58

    Article  CAS  Google Scholar 

  31. J. Landoulsi, M.J. Genet, K. El Kirat, C. Richard, S. Pulvin, and P.G. Rouxhet, Silanization with APTES for Controlling the Interactions Between Stainless Steel and Biocomponents: Reality vs Expectation, Biomaterials - Physics and Chemistry, IntechOpen, 2011, Available from: https://www.intechopen.com/books/biomaterials-physics-and-chemistry/silanization-with-aptes-for-controlling-the-interactions-between-stainless-steel-and-biocomponents-r

  32. R.G. Acres, A.V. Ellis, J. Alvino, C.E. Lenahan, D.A. Khodakov, G.F. Metha, and G.G. Andersson, Molecular Structure of 3-Aminopropyltriethoxysilane Layers Formed on Silanol-Terminated Silicon Surfaces, J. Phys. Chem. C, 2012, 116(10), p 6289–6297

    Article  CAS  Google Scholar 

  33. H.H. Kyaw, S.H. Al-Harthi, A. Sellai, and J. Dutta, Self-Organization of Gold Nanoparticles on Silanated Surfaces, Beilstein J. Nanotechnol., 2015, 6(1), p 2345–2353

    Article  CAS  Google Scholar 

  34. J. Coates, Encyclopedia of Analytical Chemistry -IInterpretation of Infrared Spectra, A Practical Approach, Encycl. Anal. Chem., 2004, p 1–23, http://www3.uma.pt/jrodrigues/disciplinas/QINO-II/Teorica/IR.pdf.

  35. Á. Netzahual-Lopantzi, J.F. Sánchez-Ramírez, J.L. Jiménez-Pérez, D. Cornejo-Monroy, G. López-Gamboa, and Z.N. Correa-Pacheco, Study of the Thermal Diffusivity of Nanofluids Containing SiO2 Decorated with Au Nanoparticles by Thermal Lens Spectroscopy, Appl. Phys. A, 2019, 125(9), p 588. https://doi.org/10.1007/s00339-019-2891-3

    Article  CAS  Google Scholar 

  36. L. Xing, N. Guo, Y. Zhang, H. Zhang, and J. Liu, A Negatively Charged Loose Nanofiltration Membrane by Blending with Poly (Sodium 4-Styrene Sulfonate) Grafted SiO2 via SI-ATRP for Dye Purification, Sep. Purif. Technol., 2015, 146, p 50–59. https://doi.org/10.1016/j.seppur.2015.03.030

    Article  CAS  Google Scholar 

  37. R.S. Dubey, Y.B.R.D. Rajesh, and M.A. More, Synthesis and Characterization of SiO2 Nanoparticles via Sol-Gel Method for Industrial Applications, Materials Today: Proceedings, 2015, 1, p 3575–3579

    Google Scholar 

  38. A. Da S. Machado, A.S. Mexias, A.C.F. Vilela, and E. Osorio, Study of Coal, Char and Coke Fines Structures and Their Proportions in the off-Gas Blast Furnace Samples by X-Ray Diffraction, Fuel, 2013, 114, p 224–228.

  39. J.A. Syed, S. Tang, and X. Meng, Super-Hydrophobic Multilayer Coatings with Layer Number Tuned Swapping in Surface Wettability and Redox Catalytic Anti-Corrosion Application, Sci. Rep., 2017, 7(1), p 1–17

    Article  Google Scholar 

  40. A. Madhan Kumar, S.S. Latthe, P. Sudhagar, I.B. Obot, and Z.M. Gasem, In-Situ Synthesis of Hydrophobic SiO2-PMMA Composite for Surface Protective Coatings: Experimental and Quantum Chemical Analysis, Polymer (Guildf), 2015, 77, p 79–86. https://doi.org/10.1016/j.polymer.2015.09.030

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by Consejo Nacional de Ciencia y Tecnología (CONACYT) as part of the Centro Mexicano de Innovación en Energía del Océano (CEMIE-Océano), and the authors would like to acknowledge to the Laboratorio Nacional de Caracterización de Materiales “LaNCaM” at the CFATA-UNAM and the Laboratorio Nacional Micro y Nanofluídica at UAQ. Also, we want to thank the technicians of UNAM Campus Juriquilla Bernardino Rodríguez-Morales, Angel Luis Rodríguez-Morales, and Gerardo Fonseca Hernández for their technical support. Additionally, the authors are grateful to the graduate in Technology Mario Leopoldo Rivera Salazar, for his support on nanoparticle synthesis and preparation of the samples during the realization of his final degree project at CFATA, UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Estévez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1243 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Reyna, M.A., Espinosa-Medina, M.A., Esparza, R. et al. Anticorrosive Effect of the Size of Silica Nanoparticles on PMMA-Based Hybrid Coatings. J. of Materi Eng and Perform 30, 1054–1065 (2021). https://doi.org/10.1007/s11665-020-05437-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05437-x

Keywords

Navigation