Skip to main content
Log in

Structural Reorganization of Cell Membrane Models Caused by the Anticancer Antibiotic Doxorubicin

  • SURFACE AND THIN FILMS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The molecular mechanisms of the interaction of anticancer antibiotic doxorubicin with lipid cell membrane models have been investigated using grazing incidence X-ray diffraction (XRD) and X-ray reflectivity (XRR). The model systems were monolayers of four types of phospholipids, related to the main components of animal cell membranes. New information on the processes of damage of phospholipid monolayer lattice caused by doxorubicin is obtained. It is established that the action of doxorubicin on anionic phospholipid monolayers is determined by the electrostatic interaction: positively charged doxorubicin molecules are incorporated between negatively charged phospholipid functional groups. In the case of neutral phospholipids the key role belongs to the hydrophobic interaction: doxorubicin molecules are coordinated with phospholipid hydrocarbon tails in disordered regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. G. Brezesinski and H. Möhwald, Adv. Colloid Int. Sci. 100, 563 (2003). https://doi.org/10.1016/s0001-8686(02)00071-4

    Article  Google Scholar 

  2. C. Stefaniu and G. Brezesinski, Curr. Opin. Colloid Int. Sci. 19, 216 (2014). https://doi.org/10.1016/j.cocis.2014.01.004

    Article  CAS  Google Scholar 

  3. V. M. Kaganer, H. Mohwald, and P. Dutta, Rev. Modern Phys. 71 (3), 779 (1999). https://doi.org/10.1103/RevModPhys.71.779

    Article  ADS  CAS  Google Scholar 

  4. J. Daillant and A. Gibaud, X-ray and Neutron Reflectivity: Principles and Application (Springer, Berlin, 2009).

    Book  Google Scholar 

  5. N. N. Novikova, M. V. Koval’chuk, E. A. Yur’eva, et al., Crystallogr. Rep. 57 (5), 648 (2012).

    Article  ADS  CAS  Google Scholar 

  6. N. Novikova, M. Kovalchuk, O. Konovalov, et al., BioNanoSci 10, 618 (2021). https://doi.org/10.1007/s12668-020-00742-0

    Article  Google Scholar 

  7. F. Arcamone, G. Cassinelli, G. Fantini, et al., Biotechnol. Bioeng. 67, 704 (2000). https://doi.org/10.1002/bit.260110607

    Article  CAS  PubMed  Google Scholar 

  8. C. F. Thorn, C. Oshiro, S. Marsh, et al., Pharmacogenet. Genomics 21, 440 (2011). https://doi.org/10.1097/FPC.0b013e32833ffb56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. S. Sritharan and N. A. Sivalingam, Life Sci. 278, 119527 (2021). https://doi.org/10.1016/j.lfs.2021.119527

  10. M. C. Asensio-López, F. Soler, D. Pascual-Figal, et al., PLOS One 12, e0172803 (2017). https://doi.org/10.1371/journal.pone.0172803

  11. A. C. Alves, A. Magarkar, M. Horta, et al., Sci. Rep. 7, 6343 (2017). https://doi.org/10.1038/s41598-017-06445-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. C. Peetla, R. Bhave, S. Vijayaraghavalu, et al., Mol. Pharm. 7, 2334 (2010). https://doi.org/10.1021/mp100308n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. R. Dadhich and S. Kapoor, Mol. Cell. Biochem. 477, 2507 (2022). https://doi.org/10.1007/s11010-022-04459-4

    Article  CAS  PubMed  Google Scholar 

  14. A. Ramu, D. Glaubiger, I. T. Magrath, et al., Cancer Res. 43, 5533 (1983).

    CAS  PubMed  Google Scholar 

  15. G. Speelmans, R. W. Staffhorst, B. de Kruijff, et al., Biochemistry 33, 13761 (1994). https://doi.org/10.1021/bi00250a029

    Article  CAS  PubMed  Google Scholar 

  16. L. Chen, H. Alrbyawi, I. Poudel, et al., AAPS PharmSciTech 20, 99 (2019). https://doi.org/10.1208/s12249-019-1316-0

    Article  CAS  PubMed  Google Scholar 

  17. A. Alves, C. Nunes, J. Lima, et al., Colloids Surf. B 160, 610 (2017). https://doi.org/10.1016/j.colsurfb.2017.09.058

    Article  CAS  Google Scholar 

  18. T. J. Yacoub, A. S. Reddy, and I. Szleifer, Biophys. J. 101, 378 (2011). https://doi.org/10.1016/j.bpj.2011.06.015

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Y. Hou, J. Li, X. Liu, et al., Chem. Phys. 541, 111036 (2021).

  20. D. Matyszewska and S. Moczulska, Electrochim. Acta 280, 229 (2018). https://doi.org/10.1016/j.electacta.2018.05.119

    Article  CAS  Google Scholar 

  21. M. H. Gaber, M. M. Ghannam, S. A. Ali, et al., Biophys. Chem. 70, 223 (1998). https://doi.org/10.1016/S0301-4622(97)00125-7

    Article  CAS  PubMed  Google Scholar 

  22. D. Marsh, Biochim. Biophys. Acta 1286, 183 (1996). https://doi.org/10.1016/S0304-4157(96)00009-3

    Article  CAS  PubMed  Google Scholar 

  23. A. Zameshin, I. A. Makhotkin, S. N. Yakunin, et al., J. Appl. Crystallogr. 49, 1300 (2016). https://doi.org/10.1107/S160057671601044X

    Article  ADS  CAS  Google Scholar 

  24. O. A. Kondratev, I. A. Makhotkin, and S. N. Yakunin, Appl. Surf. Sci. 574, 151573 (2022). https://doi.org/10.1016/j.apsusc.2021.151573

  25. Y. N. Malakhova, A. N. Korovin, D. A. Lapkin, et al., Soft Matter 13, 7300 (2017). https://doi.org/10.1039/c7sm01773a

    Article  ADS  CAS  PubMed  Google Scholar 

  26. D. L. Windt, Comput. Phys. IEEE Comput. Sci. Eng. 12, 360 (1998). https://doi.org/10.1063/1.168689

    Article  ADS  CAS  Google Scholar 

  27. Zh. Xiao-Lin and Ch. Sow-Hsin, Phys. Rev. E 47, 3174 (1993). https://doi.org/10.1103/PhysRevE.47.3174

    Article  ADS  Google Scholar 

  28. V. F. Selemenev, L. V. Rudakova, O. B. Rudakov, et al., Phospholipids against the Background of Natural Matrices (Nauchnaya Kniga, Voronezh, 2020).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge the European Synchrotron Radiation Facility for provision of the beam time at ID10 beamline and to the head of the ID10 beamline, O.V. Konovalov, for his help in carrying out experiments and fruitful discussion of the obtained results.

Funding

The study was supported in part by the Ministry of Science and Higher Education of the Russian Federation within a government contract, project FSSM-2022-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Novikova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikova, N.N., Kovalchuk, M.V., Rogachev, A.V. et al. Structural Reorganization of Cell Membrane Models Caused by the Anticancer Antibiotic Doxorubicin. Crystallogr. Rep. 68, 986–996 (2023). https://doi.org/10.1134/S1063774523601156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774523601156

Navigation