Skip to main content

Structural Damage Detection in Civil Engineering with Machine Learning: Current State of the Art

  • Conference paper
  • First Online:
Sensors and Instrumentation, Aircraft/Aerospace, Energy Harvesting & Dynamic Environments Testing, Volume 7

Abstract

This paper presents a brief overview of vibration-based structural damage detection studies that are based on machine learning (ML) in civil engineering structures. The review includes both parametric and nonparametric applications of ML accompanied with analytical and/or experimental studies. While the ML tools help the system learn from the data fed into, the computer enhances the task with the learned information without any programming on how to process the relevant data. As such, the performance level of ML-based damage identification methodologies depends on the feature extraction and classification steps, especially on the classifier choices for which the characteristic nature of the acceleration signals is recorded in a feasible way. Yet, there are several issues to be discussed about the existing ML procedures for both parametric and nonparametric applications, which are presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Salawu, O.S.: Detection of structural damage through changes in frequency: a review. Eng. Struct. (1997). https://doi.org/10.1016/S0141-0296(96)00149-6

  2. Worden, K., Manson, G., Fieller, N.R.J.: Damage detection using outlier analysis. J. Sound Vib. (2000). https://doi.org/10.1006/jsvi.1999.2514

  3. Royvaran, M., Avci, O., Davis, B.: An overview on floor vibration serviceability evaluation methods with a large database of recorded floor data. In: Conference Proceedings of the Society for Experimental Mechanics Series (2021). https://doi.org/10.1007/978-3-030-47634-2_10

    Chapter  Google Scholar 

  4. Catbas, F.N., Celik, O., Avci, O., Abdeljaber, O., Gul, M., Do, N.T.: Sensing and monitoring for stadium structures: a review of recent advances and a forward look. Front. Built Environ. 3, 38 (2017). https://doi.org/10.3389/fbuil.2017.00038

    Article  Google Scholar 

  5. Celik, O., Do, N.T., Abdeljaber, O., Gul, M., Avci, O., Catbas, F.N.: Recent issues on stadium monitoring and serviceability: a review. In: Conference Proceedings of the Society for Experimental Mechanics Series (2016). https://doi.org/10.1007/978-3-319-29763-7_41

    Chapter  Google Scholar 

  6. Avci, O., Davis, B.: A study on effective mass of one way joist supported systems. In: Structures Congress 2015 – Proceedings of the 2015 Structures Congress (2015). https://doi.org/10.1061/9780784479117.073

  7. Avci, O.: Retrofitting steel joist supported footbridges for improved vibration response. In: Structures Congress 2012 – Proceedings of the 2012 Structures Congress (2012). https://doi.org/10.1061/9780784412367.041

  8. Mansouri, M., Avci, O., Nounou, H., Nounou, M.: A comparative assessment of nonlinear state estimation methods for structural health monitoring. In: Conference Proceedings of the Society for Experimental Mechanics Series (2015). https://doi.org/10.1007/978-3-319-15224-0_5

    Chapter  Google Scholar 

  9. Chaabane, M., Ben Hamida, A., Mansouri, M., Nounou, H.N., Avci, O.: Damage detection using enhanced multivariate statistical process control technique. In: 2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA 2016) (2017). https://doi.org/10.1109/STA.2016.7952052

    Chapter  Google Scholar 

  10. Mansouri, M., Avci, O., Nounou, H., Nounou, M.: Iterated square root unscented Kalman filter for nonlinear states and parameters estimation: three DOF damped system. J. Civ. Struct. Heal. Monit. 5 (2015). https://doi.org/10.1007/s13349-015-0134-7

  11. Mansouri, M., Avci, O., Nounou, H., Nounou, M.: Iterated Square Root Unscented Kalman Filter for state estimation – CSTR model. In: 12th International Multi-Conference on Systems, Signals & Devices (SSD 2015) (2015). https://doi.org/10.1109/SSD.2015.7348243

    Chapter  Google Scholar 

  12. Kubat, M.: An Introduction to Machine Learning. (2017). https://doi.org/10.1007/978-3-319-63913-0

  13. Figueiredo, E., Santos, A.: Machine learning algorithms for damage detection. In: Vibration-Based Techniques for Damage Detection and Localization in Engineering Structures (2018). https://doi.org/10.1142/9781786344977_0001

    Chapter  Google Scholar 

  14. Yegnanarayana, B.: Artificial Neural Networks, New Delhi (2006)

    Google Scholar 

  15. Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., Inman, D.J.: 1D convolutional neural networks and applications: a survey. Mech. Syst. Signal Process. 151 (2021). https://doi.org/10.1016/j.ymssp.2020.107398

  16. Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M., Inman, D.J.: A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications. Mech. Syst. Signal Process. (2021). https://doi.org/10.1016/j.ymssp.2020.107077

  17. Avci, O., Abdeljaber, O., Kiranyaz, S., Inman, D.: Structural damage detection in real time: implementation of 1D convolutional neural networks for SHM applications. In: Niezrecki, C. (ed.) Structural Health Monitoring & Damage Detection, Volume 7: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics, 2017, pp. 49–54. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54109-9_6

    Chapter  Google Scholar 

  18. Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., Inman, D.J.: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 388, 154–170 (2017). https://doi.org/10.1016/j.jsv.2016.10.043

    Article  Google Scholar 

  19. Abdeljaber, O., Avci, O., Kiranyaz, M.S., Boashash, B., Sodano, H., Inman, D.J.: 1-D CNNs for structural damage detection: verification on a structural health monitoring benchmark data. Neurocomputing. (2017). https://doi.org/10.1016/j.neucom.2017.09.069

  20. Avci, O., Abdeljaber, O., Kiranyaz, S., Sassi, S., Ibrahim, A., Gabbouj, M.: One dimensional convolutional neural networks for real-time damage detection of rotating machinery. In: Conference Proceedings of the Society for Experimental Mechanics Series (2021)

    Google Scholar 

  21. Avci, O., Abdeljaber, O., Kiranyaz, S.: An overview of deep learning methods used in vibration-based damage detection in civil engineering. In: Conference Proceedings of the Society for Experimental Mechanics Series (2021)

    Google Scholar 

  22. Avci, O., Abdeljaber, O., Kiranyaz, S., Inman, D.: Convolutional neural networks for real-time and wireless damage detection. In: Conference Proceedings of the Society for Experimental Mechanics Series (2020). https://doi.org/10.1007/978-3-030-12115-0_17

    Chapter  Google Scholar 

  23. Kiranyaz, S., Ince, T., Abdeljaber, O., Avci, O., Gabbouj, M.: 1-D convolutional neural networks for signal processing applications. In: ICASSP, IEEE International Conference on Acoustics, Speech, and Signal Processing (2019). https://doi.org/10.1109/ICASSP.2019.8682194

    Chapter  Google Scholar 

  24. Kiranyaz, S., Avci, O., Jaber, O.A.Q.A.: Real-Time Structural Damage Detection by Convolutional Neural Networks, US16031519, 2019. https://patents.google.com/patent/US20190017911A1/en

  25. Abdeljaber, O., Sassi, S., Avci, O., Kiranyaz, S., Ibrahim, A.A., Gabbouj, M.: Fault detection and severity identification of ball bearings by online condition monitoring. IEEE Trans. Ind. Electron. (2019). https://doi.org/10.1109/TIE.2018.2886789

  26. Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Inman, D.J.: Wireless and real-time structural damage detection: a novel decentralized method for wireless sensor networks. J. Sound Vib. (2018)

    Google Scholar 

  27. Avci, O., Abdeljaber, O., Kiranyaz, S., Boashash, B., Sodano, H., Inman, D.J.: Efficiency validation of one dimensional convolutional neural networks for structural damage detection using a SHM benchmark data. In: 25th International Congress on Sound and Vibration (2018)

    Google Scholar 

  28. Pawar, P.M., Venkatesulu Reddy, K., Ganguli, R.: Damage detection in beams using spatial Fourier analysis and neural networks. J. Intell. Mater. Syst. Struct. 18, 347–359 (2006). https://doi.org/10.1177/1045389X06066292

    Article  Google Scholar 

  29. Mehrjoo, M., Khaji, N., Moharrami, H., Bahreininejad, A.: Damage detection of truss bridge joints using Artificial Neural Networks. Expert Syst. Appl. 35, 1122–1131 (2008). https://doi.org/10.1016/j.eswa.2007.08.008

    Article  Google Scholar 

  30. Yuen, K.-V., Lam, H.-F.: On the complexity of artificial neural networks for smart structures monitoring. Eng. Struct. 28, 977–984 (2006). https://doi.org/10.1016/j.engstruct.2005.11.002

    Article  Google Scholar 

  31. Ng, C.: Application of Bayesian-designed artificial neural networks in Phase II structural health monitoring benchmark studies. Aust. J. Struct. Eng. 15, 27–37 (2014). https://doi.org/10.7158/S12-042.2014.15.1

    Article  Google Scholar 

  32. González, M.P., Zapico, J.L.: Seismic damage identification in buildings using neural networks and modal data. Comput. Struct. 86 (2008). https://doi.org/10.1016/j.compstruc.2007.02.021

  33. Bakhary, N., Hao, H., Deeks, A.J.: Substructuring technique for damage detection using statistical multi-stage Artificial Neural Network. Adv. Struct. Eng. 13, 95–110 (2010)

    Article  Google Scholar 

  34. Lee, J., Kim, S.: Structural damage detection in the frequency domain using neural networks. J. Intell. Mater. Syst. Struct. 18, 785–792 (2007). https://doi.org/10.1177/1045389X06073640

    Article  Google Scholar 

  35. Hakim, S.J.S., Abdul Razak, H., Ravanfar, S.A.: Fault diagnosis on beam-like structures from modal parameters using artificial neural networks. Measurement. 76, 45–61 (2015). https://doi.org/10.1016/j.measurement.2015.08.021

    Article  Google Scholar 

  36. Betti, M., Facchini, L., Biagini, P.: Damage detection on a three-storey steel frame using artificial neural networks and genetic algorithms. Meccanica. 50, 875–886 (2014). https://doi.org/10.1007/s11012-014-0085-9

    Article  Google Scholar 

  37. Rucka, M., Wilde, K.: Neuro-wavelet damage detection technique in beam, plate and shell structures with experimental validation. J. Theor. Appl. Mech. 48 (2010)

    Google Scholar 

  38. Lam, H.F., Ng, C.T.: The selection of pattern features for structural damage detection using an extended Bayesian ANN algorithm. Eng. Struct. 30, 2762–2770 (2008). https://doi.org/10.1016/j.engstruct.2008.03.012

    Article  Google Scholar 

  39. Jiang, S.-F., Zhang, C.-M., Yao, J.: Eigen-level data fusion model by integrating rough set and probabilistic neural network for structural damage detection. Adv. Struct. Eng. 14, 333–349 (2011). https://doi.org/10.1260/1369-4332.14.2.333

    Article  Google Scholar 

  40. Lee, E.W.M., Lam, H.F.: Intelligent-based structural damage detection model. Mech. Adv. Mater. Struct. 18, 590–596 (2011). https://doi.org/10.1080/15376494.2011.621838

    Article  Google Scholar 

  41. Jiang, S.F., Zhang, C.M., Zhang, S.: Two-stage structural damage detection using fuzzy neural networks and data fusion techniques. Expert Syst. Appl. 38, 511–519 (2011). https://doi.org/10.1016/j.eswa.2010.06.093

    Article  Google Scholar 

  42. Wen, C.M., Hung, S.L., Huang, C.S., Jan, J.C.: Unsupervised fuzzy neural networks for damage detection of structures. Struct. Control Heal. Monit. 14, 144–161 (2007). https://doi.org/10.1002/stc.116

    Article  Google Scholar 

  43. Meruane, V.: Online sequential extreme learning machine for vibration-based damage assessment using transmissibility data. J. Comput. Civ. Eng. 30, 4015042 (2015). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000517

    Article  Google Scholar 

  44. Cury, A., Crémona, C.: Pattern recognition of structural behaviors based on learning algorithms and symbolic data concepts. Struct. Control Heal. Monit. 19, 161–186 (2012). https://doi.org/10.1002/stc.412

    Article  Google Scholar 

  45. Goh, L.D., Bakhary, N., Rahman, A.A., Ahmad, B.H.: Prediction of unmeasured mode shape using artificial neural network for damage detection. J. Teknol. (Sciences Eng.). 61, 57–66 (2013). https://doi.org/10.11113/jt.v61.1624

    Article  Google Scholar 

  46. Yeung, W.T., Smith, J.W.: Damage detection in bridges using neural networks for pattern recognition of vibration signatures. Eng. Struct. 27, 685–698 (2005). https://doi.org/10.1016/j.engstruct.2004.12.006

    Article  Google Scholar 

  47. Zhou, X.T., Ni, Y.Q., Zhang, F.L.: Damage localization of cable-supported bridges using modal frequency data and probabilistic neural network. Math. Probl. Eng. 2014 (2014)

    Google Scholar 

  48. Lee, J.J., Lee, J.W., Yi, J.H., Yun, C.B., Jung, H.Y.: Neural networks-based damage detection for bridges considering errors in baseline finite element models. J. Sound Vib. 280, 555–578 (2005). https://doi.org/10.1016/j.jsv.2004.01.003

    Article  Google Scholar 

  49. Chun, P., Yamashita, H., Furukawa, S.: Bridge damage severity quantification using multipoint acceleration measurement and artificial neural networks. Shock. Vib. 2015 (2015)

    Google Scholar 

  50. Figueiredo, E., Park, G., Farrar, C.R., Worden, K., Figueiras, J.: Machine learning algorithms for damage detection under operational and environmental variability. Struct. Heal. Monit. 10, 559–572 (2011). https://doi.org/10.1177/1475921710388971

    Article  Google Scholar 

  51. Santos, A., Figueiredo, E., Silva, M.F.M., Sales, C.S., Costa, J.C.W.A.: Machine learning algorithms for damage detection: kernel-based approaches. J. Sound Vib. 363, 584–599 (2016). https://doi.org/10.1016/j.jsv.2015.11.008

    Article  Google Scholar 

  52. Gui, G., Pan, H., Lin, Z., Li, Y., Yuan, Z.: Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection. KSCE J. Civ. Eng. 21, 523–534 (2017). https://doi.org/10.1007/s12205-017-1518-5

    Article  Google Scholar 

  53. de Lautour, O.R., Omenzetter, P.: Damage classification and estimation in experimental structures using time series analysis and pattern recognition. Mech. Syst. Signal Process. 24 (2010). https://doi.org/10.1016/j.ymssp.2009.12.008

  54. Dackermann, U., Li, J., Samali, B.: Dynamic-based damage identification using neural network ensembles and damage index method. Adv. Struct. Eng. 13, 1001–1016 (2010). https://doi.org/10.1260/1369-4332.13.6.1001

    Article  Google Scholar 

  55. Bandara, R.P., Chan, T.H.T., Thambiratnam, D.P.: The three-stage artificial neural network method for damage assessment of building structures. Aust. J. Struct. Eng. 14 (2013)

    Google Scholar 

  56. Bandara, R.P., Chan, T.H., Thambiratnam, D.P.: Structural damage detection method using frequency response functions. Struct. Heal. Monit. 13, 418–429 (2014). https://doi.org/10.1177/1475921714522847

    Article  Google Scholar 

  57. Liu, Y.-Y., Ju, Y.-F., Duan, C.-D., Zhao, X.-F.: Structure damage diagnosis using neural network and feature fusion. Eng. Appl. Artif. Intell. 24, 87–92 (2011). https://doi.org/10.1016/j.engappai.2010.08.011

    Article  Google Scholar 

  58. Johnson, E.A., Lam, H.F., Katafygiotis, L.S., Beck, J.L.: Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data. J. Eng. Mech. (2004). https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(3)

  59. Ghiasi, R., Torkzadeh, P., Noori, M.: A machine-learning approach for structural damage detection using least square support vector machine based on a new combinational kernel function. Struct. Heal. Monit. 15, 302–316 (2016). https://doi.org/10.1177/1475921716639587

    Article  Google Scholar 

  60. Zhu, F., Wu, Y.: A rapid structural damage detection method using integrated ANFIS and interval modeling technique. Appl. Soft Comput. J. 25, 473–484 (2014). https://doi.org/10.1016/j.asoc.2014.08.043

    Article  Google Scholar 

  61. Abdeljaber, O., Avci, O.: Nonparametric structural damage detection algorithm for ambient vibration response: utilizing artificial neural networks and self-organizing maps. J. Archit. Eng. (2016). https://doi.org/10.1061/(ASCE)AE.1943-5568.0000205

  62. Avci, O., Abdeljaber, O., Kiranyaz, S., Inman, D.: Structural health monitoring with self-organizing maps and artificial neural networks. In: Conference Proceedings of the Society for Experimental Mechanics Series (2020). https://doi.org/10.1007/978-3-030-12684-1_24

    Chapter  Google Scholar 

  63. Abdeljaber, O., Avci, O., Do, N.T., Gul, M., Celik, O., Necati Catbas, F.: Quantification of structural damage with self-organizing maps. In: Conference Proceedings of the Society for Experimental Mechanics Series (2016). https://doi.org/10.1007/978-3-319-29956-3_5

    Chapter  Google Scholar 

  64. Avci, O., Abdeljaber, O.: Self-organizing maps for structural damage detection: a novel unsupervised vibration-based algorithm. In: J. Perform. Constr. Facil., vol. 30, (2016). https://doi.org/10.1061/(ASCE)CF.1943-5509.0000801

    Chapter  Google Scholar 

  65. Yan, L., Elgamal, A., Cottrell, G.W.: Substructure vibration NARX neural network approach for statistical damage inference. J. Eng. Mech. 139, 737–747 (2011). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000363

    Article  Google Scholar 

  66. Silva, M., Santos, A., Figueiredo, E., Santos, R., Sales, C., Costa, J.C.W.A.: A novel unsupervised approach based on a genetic algorithm for structural damage detection in bridges. Eng. Appl. Artif. Intell. 52, 168–180 (2016). https://doi.org/10.1016/j.engappai.2016.03.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onur Avci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Avci, O., Abdeljaber, O., Kiranyaz, S. (2022). Structural Damage Detection in Civil Engineering with Machine Learning: Current State of the Art. In: Walber, C., Stefanski, M., Seidlitz, S. (eds) Sensors and Instrumentation, Aircraft/Aerospace, Energy Harvesting & Dynamic Environments Testing, Volume 7. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-75988-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75988-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75987-2

  • Online ISBN: 978-3-030-75988-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics