Skip to main content
Log in

Shifts in dietary patterns and risk of type-2 diabetes in a Caribbean adult population: ways to address diabetes burden

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

As the French West Indies are facing an ongoing nutrition transition with increasing type-2 diabetes mellitus (T2DM) prevalence, our study aimed to evaluate the effect of potential shifts in dietary patterns on T2DM risk in French West Indian adults according to several scenarios.

Methods

We used a cross-sectional multistage sampling survey on dietary intake conducted in 2013 on a representative sample of Guadeloupeans and Martinicans adults (n = 1063). From previously identified current dietary patterns, we used PRIME-Diabetes, a comparative risk assessment model, to estimate the effect of potential shifts from the “transitioning” pattern to the “convenient,” the “prudent,” and the “traditional” ones on T2DM risks.

Results

Potential shift in dietary intakes from the “transitioning” pattern to the “traditional” one reduced the T2DM risk in women (− 16% [− 22; − 10]) and in men − 14% [− 21; − 7]), as the shift in dietary intakes toward the “prudent” pattern (− 23% [− 29; − 17] and − 19% − 23; − 14], respectively). These risk reductions were mostly driven by increased whole grains, fruits, green leafy vegetable intakes, and decreases in potatoes, red meats, processed meats, and sugar-sweetened beverages. The shift in dietary intakes toward the “convenient” pattern did not affect the T2DM risks.

Conclusion

To curb the increase in T2DM prevalence and reduce this burden, one public health action could be to target transitioning adults and help them to shift towards a diet associated with a reduced risk of T2DM as a prudent or a traditional diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data described in the manuscript, codebook, and analytic code cannot be made available because they were provided by the French public health agency (Santé Publique France) and are not accessible to the public. Requests can be made to the French public health agency.

Abbreviations

BMI:

Body mass index

DASH:

Dietary approaches to stop hypertension

DQI-I:

Diet quality index-international

mPNNS-GS:

Modified programme national nutrition santé-guideline score

PNNS-GS2:

Programme national nutrition santé-guideline score 2

PRIME:

Preventable risk-integrated ModEl

T2DM:

Type-2 diabetes mellitus

References

  1. Institute for Health Metrics and Evaluation, Human Development Network, The World Bank (2013) The global burden of disease: generating evidence, guiding policy – Latin America and Caribbean regional edition. IHME, Seattle

    Google Scholar 

  2. Ferguson TS, Tulloch-Reid MK, Wilks RJ (2010) The epidemiology of diabetes mellitus in Jamaica and the Caribbean: a historical review. West Indian Med J 59:259–264

    CAS  PubMed  Google Scholar 

  3. Boyne MS (2009) Diabetes in the Caribbean: trouble in paradise. Insulin 4:94–105. https://doi.org/10.1016/S1557-0843(09)80018-3

    Article  Google Scholar 

  4. Pan American Health Organization (2019) NCDs at a glance: NCD mortality and risk factor prevalence in the Americas. PAHO, Washington

    Google Scholar 

  5. NCD Risk Factor Collaboration (NCD-RisC)—Americas Working Group (2019) Trends in cardiometabolic risk factors in the Americas between 1980 and 2014: a pooled analysis of population-based surveys. Lancet Glob Health 8:e123–e133. https://doi.org/10.1016/S2214-109X(19)30484-X

    Article  Google Scholar 

  6. Zhou B, Lu Y, Hajifathalian K et al (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants. Lancet 387:1513–1530. https://doi.org/10.1016/S0140-6736(16)00618-8

    Article  Google Scholar 

  7. Ricci P, Blotière P-O, Weill A et al (2010) Diabète traité : quelles évolutions entre 2000 et 2009 en France ? Bull Épidémiologique Hebd BEH 7:425–431

    Google Scholar 

  8. Mandereau-Bruno L, Fosse-Edorh S (2017) Prévalence du diabète traité pharmacologiquement (tous types) en France en 2015. Disparités territoriales et socio-économiques. Bull Épidémiologique Hebd 2017:586–591

    Google Scholar 

  9. Popkin BM (2006) Global nutrition dynamics: the world is shifting rapidly toward a diet linked with noncommunicable diseases. Am J Clin Nutr 84:289–298

    Article  CAS  PubMed  Google Scholar 

  10. Sami W, Ansari T, Butt NS, Hamid MRA (2017) Effect of diet on type 2 diabetes mellitus: a review. Int J Health Sci 11:65–71

    Google Scholar 

  11. Popkin BM, Adair LS, Ng SW (2012) Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 70:3–21. https://doi.org/10.1111/j.1753-4887.2011.00456.x

    Article  PubMed  Google Scholar 

  12. Colombet Z, Simioni M, Drogue S et al (2021) Demographic and socio-economic shifts partly explain the Martinican nutrition transition: an analysis of 10-year health and dietary changes (2003–2013) using decomposition models. Public Health Nutr. 23:1-12https://doi.org/10.1017/S136898002100327X. Epub ahead of print. PMID: 34551851.

    Article  PubMed  Google Scholar 

  13. Colombet Z, Allès B, Perignon M et al (2020) Caribbean nutrition transition: what can we learn from dietary patterns in the French West Indies? Eur J Nutr. https://doi.org/10.1007/s00394-020-02317-x

    Article  PubMed  Google Scholar 

  14. PARM (2019) Quels comportements et quelles opportunités d’innovations alimentaires ? Première étude de caractérisation du marché Antilles-Guyane

  15. DAAF Guadeloupe, DEAL (2021) DIAG’Alim—Diagnostic du système alimentaire en Guadeloupe

  16. Renzella J, Townsend N, Jewell J et al (2018) What national and subnational interventions and policies based on mediterranean and nordic diets are recommended or implemented in the WHO European region, and is there evidence of effectiveness in reducing noncommunicable diseases? WHO Regional Office for Europe, Copenhagen

    Google Scholar 

  17. Willcox DC, Willcox BJ, Todoriki H, Suzuki M (2009) The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr 28(Suppl):500S-516S. https://doi.org/10.1080/07315724.2009.10718117

    Article  CAS  PubMed  Google Scholar 

  18. Willett W, Rockström J, Loken B et al (2019) Food in the anthropocene: the EAT-lancet commission on healthy diets from sustainable food systems. Lancet Lond Engl 393:447–492. https://doi.org/10.1016/S0140-6736(18)31788-4

    Article  Google Scholar 

  19. Scarborough P, Harrington RA, Mizdrak A et al (2014) The preventable risk integrated ModEl and its use to estimate the health impact of public health policy scenarios. Scientifica 2014:748750. https://doi.org/10.1155/2014/748750

    Article  PubMed  PubMed Central  Google Scholar 

  20. Adjibade M, Mariotti F, Leroy P et al (2021) Impact of intra-category food substitutions on the risk of type 2 diabetes: a modelling study on the pizza category. Br J Nutr. https://doi.org/10.1017/S0007114521002130

    Article  PubMed  Google Scholar 

  21. Castetbon K, Ramalli L, Vaidie A et al (2016) Consommations alimentaires et biomarqueurs nutritionnels chez les adultes de 16 ans et plus en Guadeloupe et Martinique. Enquête Kannari 2013–2014. Bull Épidémiologique Hebd 4:52–62

    Google Scholar 

  22. Colombet Z, Perignon M, Salanave B et al (2019) Socioeconomic inequalities in metabolic syndrome in the French West Indies. BMC Public Health 19:1620. https://doi.org/10.1186/s12889-019-7970-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. World Health Organization (WHO) Expert Committee (1995) Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser 854:1–452

    Google Scholar 

  24. Le Moullec N, Deheeger M, Preziosi P et al (1996) Validation du manuel-photos utilisé pour l’enquête alimentaire de l’étude SU.VI.MAX. Cah Nutr Diététique 31:158–164

    Google Scholar 

  25. Arnault N, Caillot L, Castetbon K et al (2013) Table de Composition des aliments NutriNet-Santé. Edition Économica, Paris

    Google Scholar 

  26. Haubrock J, Nöthlings U, Volatier J-L et al (2011) Estimating usual food intake distributions by using the multiple source method in the EPIC-potsdam calibration study. J Nutr 141:914–920. https://doi.org/10.3945/jn.109.120394

    Article  CAS  PubMed  Google Scholar 

  27. Black AE (2000) Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int J Obes Relat Metab Disord J Int Assoc Study Obes 24:1119–1130

    Article  CAS  Google Scholar 

  28. Mifflin MD, St Jeor ST, Hill LA et al (1990) A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr 51:241–247

    Article  CAS  PubMed  Google Scholar 

  29. Allès B, Samieri C, Féart C et al (2012) Dietary patterns: a novel approach to examine the link between nutrition and cognitive function in older individuals. Nutr Res Rev 25:207–222. https://doi.org/10.1017/S0954422412000133

    Article  CAS  PubMed  Google Scholar 

  30. Baudry J, Touvier M, Allès B et al (2016) Typology of eaters based on conventional and organic food consumption: results from the NutriNet-Santé cohort study. Br J Nutr 116:700–709. https://doi.org/10.1017/S0007114516002427

    Article  CAS  PubMed  Google Scholar 

  31. Schwingshackl L, Hoffmann G, Lampousi A-M et al (2017) Food groups and risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol 32:363–375. https://doi.org/10.1007/s10654-017-0246-y

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jannasch F, Kröger J, Schulze MB (2017) Dietary patterns and type 2 diabetes: a systematic literature review and meta-analysis of prospective studies. J Nutr 147:1174–1182. https://doi.org/10.3945/jn.116.242552

    Article  CAS  PubMed  Google Scholar 

  33. Qian F, Liu G, Hu FB et al (2019) Association between plant-based dietary patterns and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA Intern Med. https://doi.org/10.1001/jamainternmed.2019.2195

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kesse-Guyot E, Chaltiel D, Fezeu LK et al (2021) Association between adherence to the French dietary guidelines and the risk of type 2 diabetes. Nutrition 84:111107. https://doi.org/10.1016/j.nut.2020.111107

    Article  PubMed  Google Scholar 

  35. Schulze MB, Martínez-González MA, Fung TT et al (2018) Food based dietary patterns and chronic disease prevention. BMJ 361:k2396. https://doi.org/10.1136/bmj.k2396

    Article  PubMed  PubMed Central  Google Scholar 

  36. Neuenschwander M, Ballon A, Weber KS et al (2019) Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses of prospective observational studies. BMJ 366:l2368. https://doi.org/10.1136/bmj.l2368

    Article  PubMed  PubMed Central  Google Scholar 

  37. Waijers PMCM, Feskens EJM, Ocké MC (2007) A critical review of predefined diet quality scores. Br J Nutr 97:219–231. https://doi.org/10.1017/S0007114507250421

    Article  CAS  PubMed  Google Scholar 

  38. Jiang T, Shuai X, Li J et al (2020) Protein-bound anthocyanin compounds of purple sweet potato ameliorate hyperglycemia by regulating hepatic glucose metabolism in high-fat diet/streptozotocin-induced diabetic mice. J Agric Food Chem 68:1596–1608. https://doi.org/10.1021/acs.jafc.9b06916

    Article  CAS  PubMed  Google Scholar 

  39. Shih C-K, Chen C-M, Varga V et al (2020) White sweet potato ameliorates hyperglycemia and regenerates pancreatic islets in diabetic mice. Food Nutr Res. https://doi.org/10.29219/fnr.v64.3609

    Article  PubMed  PubMed Central  Google Scholar 

  40. Luo D, Mu T, Sun H (2021) Sweet potato (Ipomoea batatas L.) leaf polyphenols ameliorate hyperglycemia in type 2 diabetes mellitus mice. Food Funct 12:4117–4131. https://doi.org/10.1039/d0fo02733b

    Article  CAS  PubMed  Google Scholar 

  41. Méjean C, Debussche X, Martin-Prevel Y et al (2020) Food and nutrition in the French overseas regions. IRD Éditions, coll. Expertise collective, Marseille

    Google Scholar 

  42. Sobers-Grannum N, Murphy MM, Nielsen A et al (2015) Female gender is a social determinant of diabetes in the Caribbean: a systematic review and meta-analysis. PLoS ONE 10:e0126799. https://doi.org/10.1371/journal.pone.0126799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guariguata L, Brown C, Sobers N et al (2018) An updated systematic review and meta-analysis on the social determinants of diabetes and related risk factors in the Caribbean. Rev Panam Salud Publica Pan Am J Public Health 42:e171. https://doi.org/10.26633/RPSP.2018.171

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Martinique health observatory (OSM), the Guadeloupe health observatory (Orsag), the regional health agency of Martinique (ARS-Martinique), the regional health agency of Guadeloupe (ARS-Guadeloupe), the French Agency for Food, Environmental and Occupational Health and Safety (Anses) and the French Public Health Agency (Santé Publique France), as the main investigators, promoters, and supporters of the Escal and Kannari surveys. The authors thank the interviewers and all the participants. The authors also thank the Nutritional Surveillance and Epidemiology Team (ESEN), French Public Health Agency and Paris-13 University, as the main investigator of the nutritional part of the surveys and for access to the Escal and Kannari databases and support documentation.

Funding

This study was part of the NuTWInd project (Nutrition Transition in French West Indies), supported by the French National Research Agency (Agence nationale de la recherche, ANR) in the context of the 2016 “appel à projets générique” (ANR-16-CE21-0009).

Author information

Authors and Affiliations

Authors

Contributions

The authors’ responsibilities were as follows: CM and LGS designed the study, ZC drafted the manuscript, ZC performed the statistical analysis, PL performed the PRIME-Diabetes model, ZC, PL, CM and LGS contributed to the data interpretation and revised each draft for important intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zoé Colombet.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 174 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colombet, Z., Leroy, P., Soler, LG. et al. Shifts in dietary patterns and risk of type-2 diabetes in a Caribbean adult population: ways to address diabetes burden. Eur J Nutr 62, 2233–2243 (2023). https://doi.org/10.1007/s00394-023-03144-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-023-03144-6

Keywords

Navigation